Thursday, July 7, 2011

Hot off the presses! Jul 08 Mol Cell

The Jul 08 issue of the Mol Cell is now up on Pubget (About Mol Cell): if you're at a subscribing institution, just click the link in the latest link at the home page. (Note you'll only be able to get all the PDFs in the issue if your institution subscribes to Pubget.)

Latest Articles Include:

  • S-Nitrosylation at the Interface of Autophagy and Disease
    - Mol Cell 43(1):1-3 (2011)
    In this issue of Molecular Cell, Sarkar et al. (2011) provide the first evidence for involvement of nitric oxide bioactivity in autophagy and suggest new insight into the role of aberrant S-nitrosylation in the pathogenesis of neurodegeneration.
  • Reversible Acetylation of Metabolic Enzymes Celebration: SIRT2 and p300 Join the Party
    - Mol Cell 43(1):3-5 (2011)
    Compelling evidence suggests that metabolic pathways are coordinated through reversible acetylation of metabolic enzymes in response to nutrient availability. In this issue of Molecular Cell, Jiang et al. (2011) show that the rate-limiting enzyme in gluconeogenesis, phosphoenolpyruvate carboxykinase 1, is regulated through reversible acetylation by SIRT2 and p300.
  • The United States of Histone Ubiquitylation and Methylation
    - Mol Cell 43(1):5-7 (2011)
    In this issue of Molecular Cell, Wu et al. (2011) reveal that ubiquitylation of histone 2B lysine 34 stimulates histone methyltransferase activity on nucleosomes, a finding with implications for the general mechanism by which monoubiquitylation may influence subsequent modification activities.
  • A Diversity of Assembly Mechanisms of a Generic Amyloid Fold
    - Mol Cell 43(1):8-18 (2011)
    Protein misfolding and amyloid assembly have long been recognized as being responsible for many devastating human diseases. Recent findings indicate that amyloid assemblies may facilitate crucial biological processes from bacteria to mammals. This review focuses on the mechanistic understanding of amyloid formation, including the transformation of initially innocuous proteins into oligomers and fibrils. The result is a competing folding and assembly energy landscape, which contains a number of routes by which the polypeptide chain can convert its primary sequence into functional structures, dysfunctional assemblies, or epigenetic entities that provide both threats and opportunities in the evolution of life.
  • Complex Inhibitory Effects of Nitric Oxide on Autophagy
    - Mol Cell 43(1):19-32 (2011)
    Autophagy, a major degradation process for long-lived and aggregate-prone proteins, affects various human processes, such as development, immunity, cancer, and neurodegeneration. Several autophagy regulators have been identified in recent years. Here we show that nitric oxide (NO), a potent cellular messenger, inhibits autophagosome synthesis via a number of mechanisms. NO impairs autophagy by inhibiting the activity of S-nitrosylation substrates, JNK1 and IKKβ. Inhibition of JNK1 by NO reduces Bcl-2 phosphorylation and increases the Bcl-2–Beclin 1 interaction, thereby disrupting hVps34/Beclin 1 complex formation. Additionally, NO inhibits IKKβ and reduces AMPK phosphorylation, leading to mTORC1 activation via TSC2. Overexpression of nNOS, iNOS, or eNOS impairs autophagosome formation primarily via the JNK1–Bcl-2 pathway. Conversely, NOS inhibition enhances the clearance of autophagic substrates and reduces neurodegeneration in models of Huntington's disease. Our! data suggest that nitrosative stress-mediated protein aggregation in neurodegenerative diseases may be, in part, due to autophagy inhibition.
  • Acetylation Regulates Gluconeogenesis by Promoting PEPCK1 Degradation via Recruiting the UBR5 Ubiquitin Ligase
    - Mol Cell 43(1):33-44 (2011)
    Protein acetylation has emerged as a major mechanism in regulating cellular metabolism. Whereas most glycolytic steps are reversible, the reaction catalyzed by pyruvate kinase is irreversible, and the reverse reaction requires phosphoenolpyruvate carboxykinase (PEPCK1) to commit for gluconeogenesis. Here, we show that acetylation regulates the stability of the gluconeogenic rate-limiting enzyme PEPCK1, thereby modulating cellular response to glucose. High glucose destabilizes PEPCK1 by stimulating its acetylation. PEPCK1 is acetylated by the P300 acetyltransferase, and this acetylation stimulates the interaction between PEPCK1 and UBR5, a HECT domain containing E3 ubiquitin ligase, therefore promoting PEPCK1 ubiquitinylation and degradation. Conversely, SIRT2 deacetylates and stabilizes PEPCK1. These observations represent an example that acetylation targets a metabolic enzyme to a specific E3 ligase in response to metabolic condition changes. Given that increased leve! ls of PEPCK are linked with type II diabetes, this study also identifies potential therapeutic targets for diabetes.
  • SHP2 Tyrosine Phosphatase Converts Parafibromin/Cdc73 from a Tumor Suppressor to an Oncogenic Driver
    - Mol Cell 43(1):45-56 (2011)
    Deregulation of SHP2 is associated with malignant diseases as well as developmental disorders. Although SHP2 is required for full activation of RAS signaling, other potential roles in cell physiology have not been elucidated. Here we show that SHP2 dephosphorylates parafibromin/Cdc73, a core component of the RNA polymerase II-associated factor (PAF) complex. Parafibromin is known to act as a tumor suppressor that inhibits cyclin D1 and c-myc by recruiting SUV39H1 histone methyltransferase. However, parafibromin can also act in the opposing direction by binding β-catenin, thereby activating promitogenic/oncogenic Wnt signaling. We found that, on tyrosine dephosphorylation by SHP2, parafibromin acquires the ability to stably bind β-catenin. The parafibromin/β-catenin interaction overrides parafibromin/SUV39H1-mediated transrepression and induces expression of Wnt target genes, including cyclin D1 and c-myc. Hence, SHP2 governs the opposing functions of parafibromin, d! eregulation of which may cause the development of tumors or developmental malformations.
  • Caspase-2-Mediated Cleavage of Mdm2 Creates a p53-Induced Positive Feedback Loop
    - Mol Cell 43(1):57-71 (2011)
    Caspase-2 is an evolutionarily conserved caspase, yet its biological function and cleavage targets are poorly understood. Caspase-2 is activated by the p53 target gene product PIDD (also known as LRDD) in a complex called the Caspase-2-PIDDosome. We show that PIDD expression promotes growth arrest and chemotherapy resistance by a mechanism that depends on Caspase-2 and wild-type p53. PIDD-induced Caspase-2 directly cleaves the E3 ubiquitin ligase Mdm2 at Asp 367, leading to loss of the C-terminal RING domain responsible for p53 ubiquitination. As a consequence, N-terminally truncated Mdm2 binds p53 and promotes its stability. Upon DNA damage, p53 induction of the Caspase-2-PIDDosome creates a positive feedback loop that inhibits Mdm2 and reinforces p53 stability and activity, contributing to cell survival and drug resistance. These data establish Mdm2 as a cleavage target of Caspase-2 and provide insight into a mechanism of Mdm2 inhibition that impacts p53 dynamics upo! n genotoxic stress.
  • Opposing Effects of Glutamine and Asparagine Govern Prion Formation by Intrinsically Disordered Proteins
    - Mol Cell 43(1):72-84 (2011)
    Sequences rich in glutamine (Q) and asparagine (N) residues often fail to fold at the monomer level. This, coupled to their unusual hydrogen-bonding abilities, provides the driving force to switch between disordered monomers and amyloids. Such transitions govern processes as diverse as human protein-folding diseases, bacterial biofilm assembly, and the inheritance of yeast prions (protein-based genetic elements). A systematic survey of prion-forming domains suggested that Q and N residues have distinct effects on amyloid formation. Here, we use cell biological, biochemical, and computational techniques to compare Q/N-rich protein variants, replacing Ns with Qs and Qs with Ns. We find that the two residues have strong and opposing effects: N richness promotes assembly of benign self-templating amyloids; Q richness promotes formation of toxic nonamyloid conformers. Molecular simulations focusing on intrinsic folding differences between Qs and Ns suggest that their differ! ent behaviors are due to the enhanced turn-forming propensity of Ns over Qs.
  • Recruitment of TIF1γ to Chromatin via Its PHD Finger-Bromodomain Activates Its Ubiquitin Ligase and Transcriptional Repressor Activities
    - Mol Cell 43(1):85-96 (2011)
    The interplay between sequence-specific DNA-binding transcription factors, histone-modifying enzymes, and chromatin-remodeling enzymes underpins transcriptional regulation. Although it is known how single domains of chromatin "readers" bind specific histone modifications, how combinations of histone marks are recognized and decoded is poorly understood. Moreover, the role of histone binding in regulating the enzymatic activity of chromatin readers is not known. Here we focus on the TGF-β superfamily transcriptional repressor TIF1γ/TRIM33/Ectodermin and demonstrate that its PHD finger-bromodomain constitutes a multivalent histone-binding module that specifically binds histone H3 tails unmethylated at K4 and R2 and acetylated at two key lysines. TIF1γ's ability to ubiquitinate its substrate Smad4 requires its PHD finger-bromodomain, as does its transcriptional repressor activity. Most importantly, TIF1γ's E3 ubiquitin ligase activity is induced by histone binding! . We propose a model of TIF1γ activity in which it dictates the residence time of activated Smad complexes at promoters of TGF-β superfamily target genes.
  • Mammalian hyperplastic discs Homolog EDD Regulates miRNA-Mediated Gene Silencing
    - Mol Cell 43(1):97-109 (2011)
    MicroRNAs (miRNAs) regulate gene expression through translation repression and mRNA destabilization. However, the molecular mechanisms of miRNA silencing are still not well defined. Using a genetic screen in mouse embryonic stem (ES) cells, we identify mammalian hyperplastic discs protein EDD, a known E3 ubiquitin ligase, as a key component of the miRNA silencing pathway. ES cells deficient for EDD are defective in miRNA function and exhibit growth defects. We demonstrate that E3 ubiquitin ligase activity is dispensable for EDD function in miRNA silencing. Instead, EDD interacts with GW182 family proteins in the Argonaute-miRNA complexes. The PABC domain of EDD is essential for its silencing function. Through the PABC domain, EDD participates in miRNA silencing by recruiting downstream effectors. Among the PABC-interactors, DDX6 and Tob1/2 are both required and sufficient for silencing mRNA targets. Taken together, these data demonstrate a critical function for EDD in ! miRNA silencing.
  • siRNA Repositioning for Guide Strand Selection by Human Dicer Complexes
    - Mol Cell 43(1):110-121 (2011)
    The human ribonuclease Dicer and its double-stranded RNA (dsRNA)-binding protein (dsRBP) partners TRBP and PACT play important roles in the biogenesis of regulatory RNAs. Following dicing, one dsRNA product strand is preferentially assembled into an RNA-induced silencing complex (RISC). The mechanism of strand selection in humans and the possible role of Dicer in this process remain unclear. Here we demonstrate that dsRNAs undergo significant repositioning within Dicer complexes following dicing. This repositioning enables directional binding of RNA duplexes, thereby biasing their orientation for guide strand selection according to the thermodynamic properties of the helix. Our findings indicate that Dicer is itself capable of sensing siRNA thermodynamic asymmetry regardless of the dsRBP to which it is bound. These results support a model in which Dicer employs two distinct RNA-binding sites—one for dsRNA processing and the other for sensing of siRNA thermodynamic as! ymmetry—during RISC loading in humans.
  • Failure of Origin Activation in Response to Fork Stalling Leads to Chromosomal Instability at Fragile Sites
    - Mol Cell 43(1):122-131 (2011)
    Perturbed DNA replication in early stages of cancer development induces chromosomal instability preferentially at fragile sites. However, the molecular basis for this instability is unknown. Here, we show that even under normal growth conditions, replication fork progression along the fragile site, FRA16C, is slow and forks frequently stall at AT-rich sequences, leading to activation of additional origins to enable replication completion. Under mild replication stress, the frequency of stalling at AT-rich sequences is further increased. Strikingly, unlike in the entire genome, in the FRA16C region additional origins are not activated, suggesting that all potential origins are already activated under normal conditions. Thus, the basis for FRA16C fragility is replication fork stalling at AT-rich sequences and inability to activate additional origins under replication stress. Our results provide a mechanism explaining the replication stress sensitivity of fragile sites an! d thus, the basis for genomic instability during early stages of cancer development.
  • The RING Finger Protein MSL2 in the MOF Complex Is an E3 Ubiquitin Ligase for H2B K34 and Is Involved in Crosstalk with H3 K4 and K79 Methylation
    - Mol Cell 43(1):132-144 (2011)
    We demonstrate that RING finger protein MSL2 in the MOF-MSL complex is a histone ubiquitin E3 ligase. MSL2, together with MSL1, has robust histone ubiquitylation activity that mainly targets nucleosomal H2B on lysine 34 (H2B K34ub), a site within a conserved basic patch on H2B tail. H2B K34ub by MSL1/2 directly regulates H3 K4 and K79 methylation through trans-tail crosstalk both in vitro and in cells. The significance of MSL1/2-mediated histone H2B ubiquitylation is underscored by the facts that MSL1/2 activity is important for transcription activation at HOXA9 and MEIS1 loci and that this activity is evolutionarily conserved in the Drosophila dosage compensation complex. Altogether, these results indicate that the MOF-MSL complex possesses two distinct chromatin-modifying activities (i.e., H4 K16 acetylation and H2B K34 ubiquitylation) through MOF and MSL2 subunits. They also shed light on how an intricate network of chromatin-modifying enzymes functions coordinately! in gene activation.
  • Transcription Factor AP1 Potentiates Chromatin Accessibility and Glucocorticoid Receptor Binding
    - Mol Cell 43(1):145-155 (2011)
    Ligand-dependent transcription by the nuclear receptor glucocorticoid receptor (GR) is mediated by interactions with coregulators. The role of these interactions in determining selective binding of GR to regulatory elements remains unclear. Recent findings indicate that a large fraction of genomic GR binding coincides with chromatin that is accessible prior to hormone treatment, suggesting that receptor binding is dictated by proteins that maintain chromatin in an open state. Combining DNaseI accessibility and chromatin immunoprecipitation with high-throughput sequencing, we identify the activator protein 1 (AP1) as a major partner for productive GR-chromatin interactions. AP1 is critical for GR-regulated transcription and recruitment to co-occupied regulatory elements, illustrating an extensive AP1-GR interaction network. Importantly, the maintenance of baseline chromatin accessibility facilitates GR recruitment and is dependent on AP1 binding. We propose a model in w! hich the basal occupancy of transcription factors acts to prime chromatin and direct inducible transcription factors to select regions in the genome.

No comments: