Monday, July 4, 2011

Hot off the presses! Jul 01 Trends Plant Sci

The Jul 01 issue of the Trends Plant Sci is now up on Pubget (About Trends Plant Sci): if you're at a subscribing institution, just click the link in the latest link at the home page. (Note you'll only be able to get all the PDFs in the issue if your institution subscribes to Pubget.)

Latest Articles Include:

  • Editorial Board
    - Trends Plant Sci 16(7):i (2011)
  • Understanding pollen tube growth: the hydrodynamic model versus the cell wall model
    - Trends Plant Sci 16(7):347-352 (2011)
    Scientific progress stimulates the evolution of models used to understand and conceptualize biological behaviors. The widely accepted cell wall model of pollen tube growth explains stochastic growth of the apical pectin wall, but fails to explain the mechanism driving oscillations in growth and cell signaling. Recent advances led to the formulation of a new hydrodynamic model that explains the mechanism that drives both stochastic and oscillatory growth, as well as oscillations in cell signaling and ion fluxes. A critical analysis of evidence that has been used to challenge the validity of the hydrodynamic model yields new information on turgor pressure, cell mechanical properties and nonlinear dynamics in pollen tube growth. These results may have broader significance for plant cell growth.
  • Pollen tubes and the physical world
    - Trends Plant Sci 16(7):353-355 (2011)
    The primary goal of our previous opinion paper (Winship, L.J. et al. (2010) Trends Plant Sci. 15, 363–369) [1] was to put two models for the control of pollen tube growth on the same theoretical and biophysical footing, and to then test both for consistency with basic principles and with experimental data. Our central thesis, then and now, is that the biophysical and biochemical mechanisms that enable pollen tubes to grow and to respond to their environment evolved in a physical context constrained by known, inescapable principles. First, pressure is a scalar, not a vector quantity. Second, the water movement in and out of plant cells that generates pressure is passive, not active, and is controlled by differences in water potential. Here we respond to the issues raised by Zonia and Munnik (Trends Plant Sci. 2011; this issue) [2] in the light of new evidence concerning turgor pressure and pollen tube growth rates.
  • Successful joint ventures of plants: arbuscular mycorrhiza and beyond
    - Trends Plant Sci 16(7):356-362 (2011)
    Among the oldest symbiotic associations of plants are arbuscular mycorrhiza (AM) with fungi of the phylum Glomeromycota. Although many of the symbiotic signaling components have been identified on the side of the plant, AM fungi have long evaded genetic analysis owing to their strict biotrophy and their exceptional genetics. Recently, the identification of the fungal symbiosis signal (Myc factor) and of a corresponding Myc factor receptor, and new insights into AM fungal genetics, have opened new avenues to address early communication and functional aspects of AM symbiosis. These advances will pave the way for breeding programs towards adapted AM fungi for crop production, and will shed light on the ecology and evolution of this remarkably successful symbiosis.
  • Agricultural biotechnology for crop improvement in a variable climate: hope or hype?
    - Trends Plant Sci 16(7):363-371 (2011)
    Developing crops that are better adapted to abiotic stresses is important for food production in many parts of the world today. Anticipated changes in climate and its variability, particularly extreme temperatures and changes in rainfall, are expected to make crop improvement even more crucial for food production. Here, we review two key biotechnology approaches, molecular breeding and genetic engineering, and their integration with conventional breeding to develop crops that are more tolerant of abiotic stresses. In addition to a multidisciplinary approach, we also examine some constraints that need to be overcome to realize the full potential of agricultural biotechnology for sustainable crop production to meet the demands of a projected world population of nine billion in 2050.
  • Poly(ADP-ribosyl)ation in plants
    - Trends Plant Sci 16(7):372-380 (2011)
    Poly(ADP-ribose) polymerases (PARPs) and poly(ADP-ribose) glycohydrolases (PARGs) are the main enzymes responsible for the post-translational modification known as poly(ADP-ribosyl)ation. These enzymes play important roles in genotoxic stress tolerance and DNA repair, programmed cell death, transcription, and cell cycle control in animals. Similar impacts are being discovered in plants, as well as roles in plant-specific processes. In particular, we review recent work that has revealed significant roles for poly(ADP-ribosyl)ation in plant responses to biotic and abiotic stress, as well as roles for ADP-ribose pyrophosphatases (a subset of the nucleoside diphosphate linked to some moiety-X or NUDX hydrolases). Future challenges include identification of poly(ADP-ribosyl)ation targets and interacting proteins, improved use of inhibitors and plant mutants, and field-based studies with economically valuable plant species.
  • The biochemistry of nitrogen mobilization: purine ring catabolism
    - Trends Plant Sci 16(7):381-387 (2011)
    The enzymatic route of purine ring catabolism has recently been completed by the discovery of several novel enzymes identified through comparative genome analyses. Here, we review these recent discoveries and present an overview of purine ring catabolism in plants. Xanthine is oxidized to urate in the cytosol, followed by three enzymatic steps taking place in the peroxisome and four reactions in the endoplasmic reticulum releasing the four ring nitrogen as ammonia. Although the main physiological function of purine degradation might lie in the remobilization of nitrogen resources, it has also emerged that catabolic intermediates, the ureides allantoin and allantoate, are likely to be involved in protecting plants against abiotic stress. Conserved alternative splicing mediating the peroxisomal as well as cytosolic localization of allantoin synthase potentially links purine ring catabolism to brassinosteroid signaling.
  • Cytokinins and plant immunity: old foes or new friends?
    - Trends Plant Sci 16(7):388-394 (2011)
    Cytokinins are plant growth promoting hormones involved in the specification of embryonic cells, maintenance of meristematic cells, shoot formation and development of vasculature. Cytokinins have also emerged as a major factor in plant–microbe interactions during nodule organogenesis and pathogenesis. Microbe-originated cytokinins confer abnormal hypersensitivity of cytokinins to plants, augmenting the sink activity of infected regions. However, recent findings have shed light on a distinct role of cytokinins in plant immune responses. Plant-borne cytokinins systemically induce resistance against pathogen infection. This resistance is orchestrated by endogenous cytokinin and salicylic acid signaling. Here, we discuss how plant- and pathogen-derived cytokinins inversely affect the plant defense response. In addition, we consider the molecular mechanisms underlying plant-derived cytokinin action in plant immunity.
  • Chloroplastic and mitochondrial metal homeostasis
    - Trends Plant Sci 16(7):395-404 (2011)
    Transition metal deficiency has a strong impact on the growth and survival of an organism. Indeed, transition metals, such as iron, copper, manganese and zinc, constitute essential cofactors for many key cellular functions. Both photosynthesis and respiration rely on metal cofactor-mediated electron transport chains. Chloroplasts and mitochondria are, therefore, organelles with high metal ion demand and represent essential components of the metal homeostasis network in photosynthetic cells. In this review, we describe the metal requirements of chloroplasts and mitochondria, the acclimation of their functions to metal deficiency and recent advances in our understanding of their contributions to cellular metal homeostasis, the control of the cellular redox status and the synthesis of metal cofactors.

No comments: