Latest Articles Include:
- In This Issue
- Cell 146(1):1, 3 (2011)
- Organ Regeneration
- Cell 146(1):5, 7 (2011)
Technologies for reprogramming cells are spreading like wildfire. One laboratory after another is reporting faster, more efficient methods for generating cardiomyocytes, blood cells, and even neurons, all from readily available skin fibroblasts. But how close are these "custom-made" cells to reaching the clinic? This Select highlights recent studies demonstrating the ability of cultured stem cells to repopulate and regenerate damaged organs in vivo while also offering a glimpse of future challenges on the horizon. - A Feedforward Loop Links Gaucher and Parkinson's Diseases?
- Cell 146(1):9-11 (2011)
Mutations in the GBA gene that encodes glucocerebrosidase cause the lysosomal storage disorder Gaucher disease but also increase the risk for Parkinson's disease. Mazzulli et al. (2011) uncover a possible mechanism to explain this connection: loss of glucocerebrosidase creates a positive feedback loop of reduced lysosomal function and α-synuclein accumulation, ultimately leading to neurodegeneration. - A YY1 Bridge for X Inactivation
- Cell 146(1):11-13 (2011)
Xist RNA inactivates one mammalian X chromosome (the Xi) by associating with it in cis. The mechanism of this interaction is unresolved. Jeon and Lee (2011) now show that YY1 binds both Xist RNA and DNA, thereby providing a mechanism to anchor Xist to the Xi and facilitate X chromosome inactivation. - A Flip Turn for Membrane Protein Insertion
- Cell 146(1):13-15 (2011)
The transmembrane domains in a membrane protein must be recognized and correctly oriented before their insertion into the lipid bilayer. Devaraneni et al. (2011) generate snapshots at different stages of membrane protein biogenesis, revealing a dynamic set of steps that imply an unexpectedly flexible membrane insertion machinery. - Drug Seekers
- Cell 146(1):16-17 (2011)
- Development and Evolution of the Human Neocortex
- Cell 146(1):18-36 (2011)
The size and surface area of the mammalian brain are thought to be critical determinants of intellectual ability. Recent studies show that development of the gyrated human neocortex involves a lineage of neural stem and transit-amplifying cells that forms the outer subventricular zone (OSVZ), a proliferative region outside the ventricular epithelium. We discuss how proliferation of cells within the OSVZ expands the neocortex by increasing neuron number and modifying the trajectory of migrating neurons. Relating these features to other mammalian species and known molecular regulators of the mouse neocortex suggests how this developmental process could have emerged in evolution. - Gaucher Disease Glucocerebrosidase and α-Synuclein Form a Bidirectional Pathogenic Loop in Synucleinopathies
- Cell 146(1):37-52 (2011)
Parkinson's disease (PD), an adult neurodegenerative disorder, has been clinically linked to the lysosomal storage disorder Gaucher disease (GD), but the mechanistic connection is not known. Here, we show that functional loss of GD-linked glucocerebrosidase (GCase) in primary cultures or human iPS neurons compromises lysosomal protein degradation, causes accumulation of α-synuclein (α-syn), and results in neurotoxicity through aggregation-dependent mechanisms. Glucosylceramide (GlcCer), the GCase substrate, directly influenced amyloid formation of purified α-syn by stabilizing soluble oligomeric intermediates. We further demonstrate that α-syn inhibits the lysosomal activity of normal GCase in neurons and idiopathic PD brain, suggesting that GCase depletion contributes to the pathogenesis of sporadic synucleinopathies. These findings suggest that the bidirectional effect of α-syn and GCase forms a positive feedback loop that may lead to a self-propagating disease.! Therefore, improved targeting of GCase to lysosomes may represent a specific therapeutic approach for PD and other synucleinopathies. - Glioma Stem Cell Proliferation and Tumor Growth Are Promoted by Nitric Oxide Synthase-2
- Cell 146(1):53-66 (2011)
Malignant gliomas are aggressive brain tumors with limited therapeutic options, and improvements in treatment require a deeper molecular understanding of this disease. As in other cancers, recent studies have identified highly tumorigenic subpopulations within malignant gliomas, known generally as cancer stem cells. Here, we demonstrate that glioma stem cells (GSCs) produce nitric oxide via elevated nitric oxide synthase-2 (NOS2) expression. GSCs depend on NOS2 activity for growth and tumorigenicity, distinguishing them from non-GSCs and normal neural progenitors. Gene expression profiling identified many NOS2-regulated genes, including the cell-cycle inhibitor cell division autoantigen-1 (CDA1). Further, high NOS2 expression correlates with decreased survival in human glioma patients, and NOS2 inhibition slows glioma growth in a murine intracranial model. These data provide insight into how GSCs are mechanistically distinct from their less tumorigenic counterparts and! suggest that NOS2 inhibition may be an efficacious approach to treating this devastating disease. - Thymine DNA Glycosylase Is Essential for Active DNA Demethylation by Linked Deamination-Base Excision Repair
- Cell 146(1):67-79 (2011)
DNA methylation is a major epigenetic mechanism for gene silencing. Whereas methyltransferases mediate cytosine methylation, it is less clear how unmethylated regions in mammalian genomes are protected from de novo methylation and whether an active demethylating activity is involved. Here, we show that either knockout or catalytic inactivation of the DNA repair enzyme thymine DNA glycosylase (TDG) leads to embryonic lethality in mice. TDG is necessary for recruiting p300 to retinoic acid (RA)-regulated promoters, protection of CpG islands from hypermethylation, and active demethylation of tissue-specific developmentally and hormonally regulated promoters and enhancers. TDG interacts with the deaminase AID and the damage response protein GADD45a. These findings highlight a dual role for TDG in promoting proper epigenetic states during development and suggest a two-step mechanism for DNA demethylation in mammals, whereby 5-methylcytosine and 5-hydroxymethylcytosine are f! irst deaminated by AID to thymine and 5-hydroxymethyluracil, respectively, followed by TDG-mediated thymine and 5-hydroxymethyluracil excision repair. PaperClip To listen to this audio, enable JavaScript on your browser. However, you can download and play the audio by clicking on the icon below Download this Audio (2700 K) - Eukaryotic Origin-Dependent DNA Replication In Vitro Reveals Sequential Action of DDK and S-CDK Kinases
- Cell 146(1):80-91 (2011)
Proper eukaryotic DNA replication requires temporal separation of helicase loading from helicase activation and replisome assembly. Using an in vitro assay for eukaryotic origin-dependent replication initiation, we investigated the control of these events. After helicase loading, we found that the Dbf4-dependent Cdc7 kinase (DDK) but not S phase cyclin-dependent kinase (S-CDK) is required for the initial origin recruitment of Sld3 and the Cdc45 helicase-activating protein. Likewise, in vivo, DDK drives early-firing-origin recruitment of Cdc45 before activation of S-CDK. After S-CDK activation, a second helicase-activating protein (GINS) and the remainder of the replisome are recruited to the origin. Finally, recruitment of lagging but not leading strand DNA polymerases depends on Mcm10 and DNA unwinding. Our studies identify distinct roles for DDK and S-CDK during helicase activation and support a model in which the leading strand DNA polymerase is recruited prior to o! rigin DNA unwinding and RNA primer synthesis. - Human Mediator Subunit MED26 Functions as a Docking Site for Transcription Elongation Factors
- Cell 146(1):92-104 (2011)
Promoter-proximal pausing by initiated RNA polymerase II (Pol II) and regulated release of paused polymerase into productive elongation has emerged as a major mechanism of transcription activation. Reactivation of paused Pol II correlates with recruitment of super-elongation complexes (SECs) containing ELL/EAF family members, P-TEFb, and other proteins, but the mechanism of their recruitment is an unanswered question. Here, we present evidence for a role of human Mediator subunit MED26 in this process. We identify in the conserved N-terminal domain of MED26 overlapping docking sites for SEC and a second ELL/EAF-containing complex, as well as general initiation factor TFIID. In addition, we present evidence consistent with the model that MED26 can function as a molecular switch that interacts first with TFIID in the Pol II initiation complex and then exchanges TFIID for complexes containing ELL/EAF and P-TEFb to facilitate transition of Pol II into the elongation stage ! of transcription. - Building Enhancers from the Ground Up: A Synthetic Biology Approach
- Cell 146(1):105-118 (2011)
A challenge of the synthetic biology approach is to use our understanding of a system to recreate a biological function with specific properties. We have applied this framework to bacterial enhancers, combining a driver, transcription factor binding sites, and a poised polymerase to create synthetic modular enhancers. Our findings suggest that enhancer-based transcriptional control depends critically and quantitatively on DNA looping, leading to complex regulatory effects when the enhancer cassettes contain additional transcription factor binding sites for TetR, a bacterial transcription factor. We show through a systematic interplay of experiment and thermodynamic modeling that the level of gene expression can be modulated to convert a variable inducer concentration input into discrete or step-like output expression levels. Finally, using a different DNA-binding protein (TraR), we show that the regulatory output is not a particular feature of the specific DNA-binding ! protein used for the enhancer but a general property of synthetic bacterial enhancers. - YY1 Tethers Xist RNA to the Inactive X Nucleation Center
- Cell 146(1):119-133 (2011)
The long noncoding Xist RNA inactivates one X chromosome in the female mammal. Current models posit that Xist induces silencing as it spreads along X and recruits Polycomb complexes. However, the mechanisms for Xist loading and spreading are currently unknown. Here, we define the nucleation center for Xist RNA and show that YY1 docks Xist particles onto the X chromosome. YY1 is a "bivalent" protein, capable of binding both RNA and DNA through different sequence motifs. Xist's exclusive attachment to the inactive X is determined by an epigenetically regulated trio of YY1 sites as well as allelic origin. Specific YY1-to-RNA and YY1-to-DNA contacts are required to load Xist particles onto X. YY1 interacts with Xist RNA through Repeat C. We propose that YY1 acts as adaptor between regulatory RNA and chromatin targets. - Stepwise Insertion and Inversion of a Type II Signal Anchor Sequence in the Ribosome-Sec61 Translocon Complex
- Cell 146(1):134-147 (2011)
In eukaryotic cells, the ribosome-Sec61 translocon complex (RTC) establishes membrane protein topology by cotranslationally partitioning nascent polypeptides into the cytosol, ER lumen, and lipid bilayer. Using photocrosslinking, collisional quenching, cysteine accessibility, and protease protection, we show that a canonical type II signal anchor (SA) acquires its topology through four tightly coupled and mechanistically distinct steps: (1) head-first insertion into Sec61α, (2) nascent chain accumulation within the RTC, (3) inversion from type I to type II topology, and (4) stable translocation of C-terminal flanking residues. Progression through each stage is induced by incremental increases in chain length and involves abrupt changes in the molecular environment of the SA. Importantly, type II SA inversion deviates from a type I SA at an unstable intermediate whose topology is controlled by dynamic interactions between the ribosome and translocon. Thus, the RTC coor! dinates SA topogenesis within a protected environment via sequential energetic transitions of the TM segment. - Biomechanical Remodeling of the Microenvironment by Stromal Caveolin-1 Favors Tumor Invasion and Metastasis
- Cell 146(1):148-163 (2011)
Mechanotransduction is a key determinant of tissue homeostasis and tumor progression. It is driven by intercellular adhesions, cell contractility, and forces generated within the microenvironment and is dependent on extracellular matrix composition, organization, and compliance. We show that caveolin-1 (Cav1) favors cell elongation in three-dimensional cultures and promotes Rho- and force-dependent contraction, matrix alignment, and microenvironment stiffening through regulation of p190RhoGAP. In turn, microenvironment remodeling by Cav1 fibroblasts forces cell elongation. Cav1-deficient mice have disorganized stromal tissue architecture. Stroma associated with human carcinomas and melanoma metastases is enriched in Cav1-expressing carcinoma-associated fibroblasts (CAFs). Cav1 expression in breast CAFs correlates with low survival, and Cav1 depletion in CAFs decreases CAF contractility. Consistently, fibroblast expression of Cav1, through p190RhoGAP regulation, favors ! directional migration and invasiveness of carcinoma cells in vitro. In vivo, stromal Cav1 remodels peri- and intratumoral microenvironments to facilitate tumor invasion, correlating with increased metastatic potency. Thus, Cav1 modulates tissue responses through force-dependent architectural regulation of the microenvironment. PaperFlick To view the video inline, enable JavaScript on your browser. However, you can download and view the video by clicking on the icon below Download this Video (20876 K) - Assembly of Lamina-Specific Neuronal Connections by Slit Bound to Type IV Collagen
- Cell 146(1):164-176 (2011)
The mechanisms that generate specific neuronal connections in the brain are under intense investigation. In zebrafish, retinal ganglion cells project their axons into at least six layers within the neuropil of the midbrain tectum. Each axon elaborates a single, planar arbor in one of the target layers and forms synapses onto the dendrites of tectal neurons. We show that the laminar specificity of retinotectal connections does not depend on self-sorting interactions among RGC axons. Rather, tectum-derived Slit1, signaling through axonal Robo2, guides neurites to their target layer. Genetic and biochemical studies indicate that Slit binds to Dragnet (Col4a5), a type IV Collagen, which forms the basement membrane on the surface of the tectum. We further show that radial glial endfeet are required for the basement-membrane anchoring of Slit. We propose that Slit1 signaling, perhaps in the form of a superficial-to-deep gradient, presents laminar positional cues to ingrowing! retinal axons. - SnapShot: Spinal Cord Development
- Cell 146(1):178-178.e1 (2011)
No comments:
Post a Comment