Latest Articles Include:
- Editorial Board
- Trends Cell Bio 21(6):i (2011)
- eXIST with matrix-associated proteins
- Trends Cell Bio 21(6):321-327 (2011)
X-chromosome inactivation has long served as an experimental model system for understanding the epigenetic regulation of gene expression. Central to this phenomenon is the long, non-coding RNA Xist that is specifically expressed from the inactive X chromosome and spreads along the entire length of the chromosome in cis. Recently, two of the proteins originally identified as components of the nuclear scaffold/matrix (S/MAR-associated proteins) have been shown to control the principal features of X-chromosome inactivation; specifically, context-dependent competency and the chromosome-wide association of Xist RNA. These findings implicate the involvement of nuclear S/MAR-associated proteins in the organization of epigenetic machinery. Here, we describe a model for the functional role of S/MAR-associated proteins in the regulation of key epigenetic processes. - Pause locally, splice globally
- Trends Cell Bio 21(6):328-335 (2011)
Most eukaryotic protein-coding transcripts contain introns, which vary in number and position along the transcript body. Intron removal through pre-mRNA splicing is tightly linked to transcription by RNA polymerase II as it translocates along each gene. Here, we review recent evidence that transcription and splicing are functionally coupled. We focus on how RNA polymerase II elongation rates impact splicing through local regulation and transcriptional pausing within genes. Emerging concepts of how splicing-related changes in elongation might be achieved are highlighted. We place the interplay between transcription and splicing in the context of chromatin where nucleosome positioning influences elongation, and histone modifications participate directly in the recruitment of splicing regulators to nascent transcripts. - Pre-mRNA splicing: where and when in the nucleus
- Trends Cell Bio 21(6):336-343 (2011)
Alternative splicing is a process to differentially link exon regions in a single precursor mRNA to produce two or more different mature mRNAs, a strategy frequently used by higher eukaryotic cells to increase proteome diversity and/or enable additional post-transcriptional control of gene expression. This process can take place either co-transcriptionally or post-transcriptionally. When and where RNA splicing takes place in the cell represents a central question of cell biology; co-transcriptional splicing allows functional integration of transcription and RNA processing machineries, and could allow them to modulate one another, whereas post-transcriptional splicing could facilitate coupling RNA splicing with downstream events such as RNA export to create additional layers for regulated gene expression. This review focuses on recent advances in co- and post-transcriptional RNA splicing and proposes a new paradigm that some specific coupling events contribute to genome! organization in higher eukaryotic cells. - To repress or not to repress: This is the guardian's question
- Trends Cell Bio 21(6):344-353 (2011)
p53 is possibly the most central tumor suppressor gene of our cells, integrating stress signals to activate a transcriptional program responsible for maintaining cellular homeostasis. Many of the downstream effects of p53 are a consequence of its activity as a transcription factor, resulting in the induction of multiple target genes. In addition to gene activation, however, gene repression is an essential part of the p53 cellular response. Despite extensive research efforts towards the elucidation of p53 functions, the molecular mechanisms and biological consequences of gene repression by p53 have not been studied extensively. We review our current knowledge of the mechanisms and biological consequences of p53 repression, with special attention to recently discovered mechanisms of repression that involve non-coding RNA molecules, an emerging aspect of regulation in the p53 cellular network. - Long noncoding RNAs and human disease
- Trends Cell Bio 21(6):354-361 (2011)
A new class of transcripts, long noncoding RNAs (lncRNAs), has been recently found to be pervasively transcribed in the genome. Multiple lines of evidence increasingly link mutations and dysregulations of lncRNAs to diverse human diseases. Alterations in the primary structure, secondary structure, and expression levels of lncRNAs as well as their cognate RNA-binding proteins underlie diseases ranging from neurodegeneration to cancer. Recent progress suggests that the involvement of lncRNAs in human diseases could be far more prevalent than previously appreciated. We review the evidence linking lncRNAs to diverse human diseases and highlight fundamental concepts in lncRNA biology that still need to be clarified to provide a robust framework for lncRNA genetics. - The nucleoplasmic reticulum: form and function
- Trends Cell Bio 21(6):362-373 (2011)
The nuclear envelope (NE) physically separates nucleoplasm and cytoplasm, contributes to nuclear structural integrity, controls selective bidirectional transport of ions and macromolecular cargo, regulates gene expression, and acts as a mechanotransducer and a platform for signalling. It is noteworthy however that the NE is not simply a smooth-surfaced outer boundary but is interrupted by invaginations that reach deep within the nucleoplasm and could even traverse the nucleus completely. The existence of such a complex branched network of invaginations forming a nucleoplasmic reticulum (NR) provides sites that are capable of carrying out the 'conventional' NE functions deep within the nucleus in regions that would otherwise be remote from the nuclear periphery. In this review, we describe the structural features of NR in normal and pathological states and discuss the current understanding of their functional and possible pathological roles. - Merotelic kinetochore attachment: causes and effects
- Trends Cell Bio 21(6):374-381 (2011)
Accurate chromosome segregation depends on the proper attachment of sister kinetochores to microtubules emanating from opposite spindle poles. Merotelic kinetochore orientation is an error in which a single kinetochore is attached to microtubules emanating from both spindle poles. Despite correction mechanisms, merotelically attached kinetochores can persist until anaphase, causing chromatids to lag on the mitotic spindle and hindering their timely segregation. Recent studies showing that merotelic kinetochore attachment represents a major mechanism of aneuploidy in mitotic cells and is the primary mechanism of chromosomal instability in cancer cells have underlined the importance of studying merotely. Here, we highlight recent progress in our understanding of how cells prevent and correct merotelic kinetochore attachments.
No comments:
Post a Comment