Tuesday, April 7, 2009

Hot off the presses! Apr 22 Prog Histochem Cytochem

The Apr 22 issue of the Prog Histochem Cytochem is now up on Pubget (About Prog Histochem Cytochem): if you're at a subscribing institution, just click the link in the latest link at the home page. (Note you'll only be able to get all the PDFs in the issue if your institution subscribes to Pubget.)

Latest Articles Include:

  • ifc Editorial Board
    - Prog Histochem Cytochem 44(1):IFC (2009)
  • Cell death in the injured brain: Roles of metallothioneins
    - Prog Histochem Cytochem 44(1):1-27 (2009)
    In traumatic brain injury (TBI), the primary, irreversible damage associated with the moment of impact consists of cells dying from necrosis. This contributes to fuelling a chronic central nervous system (CNS) inflammation with increased formation of proinflammatory cytokines, enzymes and reactive oxygen species (ROS). ROS promote oxidative stress, which leads to neurodegeneration and ultimately results in programmed cell death (secondary injury). Since this delayed, secondary tissue loss occurs days to months following the primary injury it provides a therapeutic window where potential neuroprotective treatment could alleviate ongoing neurodegeneration, cell death and neurological impairment following TBI. Various neuroprotective drug candidates have been described, tested and proven effective in pre-clinical studies, including glutamate receptor antagonists, calcium-channel blockers, and caspase inhibitors. However, most of the scientific efforts have failed in trans! lating the experimental results into clinical trials. Despite intensive research, effective neuroprotective therapies are lacking in the clinic, and TBI continues to be a major cause of morbidity and mortality. This paper provides an overview of the TBI pathophysiology leading to cell death and neurological impairment. We also discuss endogenously expressed neuroprotectants and drug candidates, which at this stage may still hold the potential for treating brain injured patients.
  • The role of metallothionein in oncogenesis and cancer prognosis
    - Prog Histochem Cytochem 44(1):29-64 (2009)
    The antiapoptotic, antioxidant, proliferative, and angiogenic effects of metallothionein (MT)-I+II has resulted in increased focus on their role in oncogenesis, tumor progression, therapy response, and patient prognosis. Studies have reported increased expression of MT-I+II mRNA and protein in various human cancers; such as breast, kidney, lung, nasopharynx, ovary, prostate, salivary gland, testes, urinary bladder, cervical, endometrial, skin carcinoma, melanoma, acute lymphoblastic leukemia (ALL), and pancreatic cancers, where MT-I+II expression is sometimes correlated to higher tumor grade/stage, chemotherapy/radiation resistance, and poor prognosis. However, MT-I+II are downregulated in other types of tumors (e.g. hepatocellular, gastric, colorectal, central nervous system (CNS), and thyroid cancers) where MT-I+II is either inversely correlated or unrelated to mortality. Large discrepancies exist between different tumor types, and no distinct and reliable associatio! n exists between MT-I+II expression in tumor tissues and prognosis and therapy resistance. Furthermore, a parallel has been drawn between MT-I+II expression as a potential marker for prognosis, and MT-I+II's role as oncogenic factors, without any direct evidence supporting such a parallel. This review aims at discussing the role of MT-I+II both as a prognostic marker for survival and therapy response, as well as for the hypothesized role of MT-I+II as causal oncogenes.

No comments: