Tuesday, April 7, 2009

Hot off the presses! Apr 06 J Cell Biol

The Apr 06 issue of the J Cell Biol is now up on Pubget (About J Cell Biol): if you're at a subscribing institution, just click the link in the latest link at the home page. (Note you'll only be able to get all the PDFs in the issue if your institution subscribes to Pubget.)

Latest Articles Include:

  • Blood, stress, and tiRNAs
    - J Cell Biol 185(1):3 (2009)
  • Protease-dependent versus -independent cancer cell invasion programs: three-dimensional amoeboid movement revisited
    - J Cell Biol 185(1):11-19 (2009)
    Tissue invasion during metastasis requires cancer cells to negotiate a stromal environment dominated by cross-linked networks of type I collagen. Although cancer cells are known to use proteinases to sever collagen networks and thus ease their passage through these barriers, migration across extracellular matrices has also been reported to occur by protease-independent mechanisms, whereby cells squeeze through collagen-lined pores by adopting an ameboid phenotype. We investigate these alternate models of motility here and demonstrate that cancer cells have an absolute requirement for the membrane-anchored metalloproteinase MT1-MMP for invasion, and that protease-independent mechanisms of cell migration are only plausible when the collagen network is devoid of the covalent cross-links that characterize normal tissues.
  • Transcription, chromatin condensation, and gene migration
    - J Cell Biol 185(1):7-9 (2009)
    The binding of fluorescently tagged proteins to tandem DNA arrays has been instrumental in understanding nuclear organization and function. Through the use of more natural tandem DNA arrays, Hu et al. (Hu, Y., I. Kireev, M. Plutz, N. Ashourian, and A.S. Belmont. 2009. J. Cell Biol. 185:87-100) gain new insights into chromatin organization and dynamics, and into the association of splicing factors with active genes.
  • Assembly of multiprotein complexes that control genome function
    - J Cell Biol 185(1):21-26 (2009)
    Live-cell imaging studies aided by mathematical modeling have provided unprecedented insight into assembly mechanisms of multiprotein complexes that control genome function. Such studies have unveiled emerging properties of chromatin-associated systems involved in DNA repair and transcription.
  • Exportin 4 mediates a novel nuclear import pathway for Sox family transcription factors
    - J Cell Biol 185(1):27-34 (2009)
    SRY and other Sox-type transcription factors are important developmental regulators with various implications in human disease. In this study, we identified Exp4 (exportin 4) as an interaction partner of Sox2 in mouse embryonic stem cells and neural progenitors. We show that, besides its established function in nuclear export, Exp4 acts as a bona fide nuclear import receptor for Sox2 and SRY. Thus, Exp4 is an example of a nuclear transport receptor carrying distinct cargoes into different directions. In contrast to a published study, we observed that the import activity of Imp-{alpha} (importin-a) isoforms toward Sox2 is negligible. Instead, we found that Imp9 and the Imp-{beta}/7 heterodimer mediate nuclear import of Sox2 in parallel to Exp4. Import signals for the three pathways overlap and include conserved residues in the Sox2 high-mobility group (HMG) box domain that are also critical for DNA binding. This suggests that nuclear import of Sox proteins is facilitate! d by several parallel import pathways.
  • Angiogenin cleaves tRNA and promotes stress-induced translational repression
    - J Cell Biol 185(1):35-42 (2009)
    Stress-induced phosphorylation of eIF2{alpha} inhibits global protein synthesis to conserve energy for repair of stress-induced damage. Stress-induced translational arrest is observed in cells expressing a nonphosphorylatable eIF2{alpha} mutant (S51A), which indicates the existence of an alternative pathway of translational control. In this paper, we show that arsenite, heat shock, or ultraviolet irradiation promotes transfer RNA (tRNA) cleavage and accumulation of tRNA-derived, stress-induced small RNAs (tiRNAs). We show that angiogenin, a secreted ribonuclease, is required for stress-induced production of tiRNAs. Knockdown of angiogenin, but not related ribonucleases, inhibits arsenite-induced tiRNA production and translational arrest. In contrast, knockdown of the angiogenin inhibitor RNH1 enhances tiRNA production and promotes arsenite-induced translational arrest. Moreover, recombinant angiogenin, but not RNase 4 or RNase A, induces tiRNA production and inhibits p! rotein synthesis in the absence of exogenous stress. Finally, transfection of angiogenin-induced tiRNAs promotes phospho-eIF2{alpha}-independent translational arrest. Our results introduce angiogenin and tiRNAs as components of a phospho-eIF2{alpha}-independent stress response program.
  • The RNase Rny1p cleaves tRNAs and promotes cell death during oxidative stress in Saccharomyces cerevisiae
    - J Cell Biol 185(1):43-50 (2009)
    The cellular response to stress conditions involves a decision between survival or cell death when damage is severe. A conserved stress response in eukaryotes involves endonucleolytic cleavage of transfer RNAs (tRNAs). The mechanism and significance of such tRNA cleavage is unknown. We show that in yeast, tRNAs are cleaved by the RNase T2 family member Rny1p, which is released from the vacuole into the cytosol during oxidative stress. Rny1p modulates yeast cell survival during oxidative stress independently of its catalytic ability. This suggests that upon release to the cytosol, Rny1p promotes cell death by direct interactions with downstream components. Thus, detection of Rny1p, and possibly its orthologues, in the cytosol may be a conserved mechanism for assessing cellular damage and determining cell survival, analogous to the role of cytochrome c as a marker for mitochondrial damage.
  • A new model for binding of kinesin 13 to curved microtubule protofilaments
    - J Cell Biol 185(1):51-57 (2009)
    Kinesin motor proteins use adenosine triphosphate hydrolysis to do work on microtubules (MTs). Most kinesins walk along the MT, but class 13 kinesins instead uniquely recognize MT ends and depolymerize MT protofilaments. We have used electron microscopy (EM) to understand the molecular interactions by which kinesin 13 performs these tasks. Although a construct of only the motor domain of kinesin 13 binds to every heterodimer of a tubulin ring, a construct containing the neck and the motor domain occupies alternate binding sites. Likewise, EM maps of the dimeric full-length (FL) protein exhibit alternate site binding but reveal density for only one of two motor heads. These results indicate that the second head of dimeric kinesin 13 does not have access to adjacent binding sites on the curved protofilament and suggest that the neck alone is sufficient to obstruct access. Additionally, the FL construct promotes increased stacking of rings compared with other constructs. ! Together, these data suggest a model for kinesin 13 depolymerization in which increased efficiency is achieved by binding of one kinesin 13 molecule to adjacent protofilaments.
  • Strabismus regulates asymmetric cell divisions and cell fate determination in the mouse brain
    - J Cell Biol 185(1):59-66 (2009)
    The planar cell polarity (PCP) pathway organizes the cytoskeleton and polarizes cells within embryonic tissue. We investigate the relationship between PCP signaling and cell fate determination during asymmetric division of neural progenitors (NPs) in mouse embryos. The cortex of Lp/Lp (Loop-tail) mice deficient in the essential PCP mediator Vangl2, homologue of Drosophila melanogaster Strabismus (Stbm), revealed precocious differentiation of neural progenitors into early-born neurons at the expense of late-born neurons and glia. Although Lp/Lp NPs were easily maintained in vitro, they showed premature differentiation and loss of asymmetric distribution of Leu-Gly-Asn-enriched protein (LGN)/partner of inscuteable (Pins), a regulator of mitotic spindle orientation. Furthermore, we observed a decreased frequency in asymmetric distribution of the LGN target nuclear mitotic apparatus protein (NuMa) in Lp/Lp cortical progenitors in vivo. This was accompanied by an increase i! n the number of vertical cleavage planes typically associated with equal daughter cell identities. These findings suggest that Stbm/Vangl2 functions to maintain cortical progenitors and regulates mitotic spindle orientation during asymmetric divisions in the vertebrate brain.
  • Canonical Wnts function as potent regulators of osteogenesis by human mesenchymal stem cells
    - J Cell Biol 185(1):67-75 (2009)
    Genetic evidence indicates that Wnt signaling is critically involved in bone homeostasis. In this study, we investigated the functions of canonical Wnts on differentiation of adult multipotent human mesenchymal stem cells (hMSCs) in vitro and in vivo. We observe differential sensitivities of hMSCs to Wnt inhibition of osteogenesis versus adipogenesis, which favors osteoblastic commitment under binary in vitro differentiation conditions. Wnt inhibition of osteogenesis is associated with decreased expression of osteoblastic transcription factors and inhibition of c-Jun N-terminal kinase and p38 mitogen-activated protein kinase activation, which are involved in osteogenic differentiation. An hMSC subpopulation exhibits high endogenous Wnt signaling, the inhibition of which enhances osteogenic and adipogenic differentiation in vitro. In an in vivo bone formation model, high levels of Wnt signaling inhibit de novo bone formation by hMSCs. However, hMSCs with exogenous expre! ssion of Wnt1 but not stabilized {beta}-catenin markedly stimulate bone formation by naive hMSCs, arguing for an important role of a canonical Wnt gradient in hMSC osteogenesis in vivo.
  • Molecular signatures of cell migration in C. elegans Q neuroblasts
    - J Cell Biol 185(1):77-85 (2009)
    Metazoan cell movement has been studied extensively in vitro, but cell migration in living animals is much less well understood. In this report, we have studied the Caenorhabditis elegans Q neuroblast lineage during larval development, developing live animal imaging methods for following neuroblast migration with single cell resolution. We find that each of the Q descendants migrates at different speeds and for distinct distances. By quantitative green fluorescent protein imaging, we find that Q descendants that migrate faster and longer than their sisters up-regulate protein levels of MIG-2, a Rho family guanosine triphosphatase, and/or down-regulate INA-1, an integrin {alpha} subunit, during migration. We also show that Q neuroblasts bearing mutations in either MIG-2 or INA-1 migrate at reduced speeds. The migration defect of the mig-2 mutants, but not ina-1, appears to result from a lack of persistent polarization in the direction of cell migration. Thus, MIG-2 and ! INA-1 function distinctly to control Q neuroblast migration in living C. elegans.
  • Large-scale chromatin structure of inducible genes: transcription on a condensed, linear template
    - J Cell Biol 185(1):87-100 (2009)
    The structure of interphase chromosomes, and in particular the changes in large-scale chromatin structure accompanying transcriptional activation, remain poorly characterized. Here we use light microscopy and in vivo immunogold labeling to directly visualize the interphase chromosome conformation of 1-2 Mbp chromatin domains formed by multi-copy BAC transgenes containing 130-220 kb of genomic DNA surrounding the DHFR, Hsp70, or MT gene loci. We demonstrate near-endogenous transcription levels in the context of large-scale chromatin fibers compacted nonuniformly well above the 30-nm chromatin fiber. An approximately 1.5-3-fold extension of these large-scale chromatin fibers accompanies transcriptional induction and active genes remain mobile. Heat shock-induced Hsp70 transgenes associate with the exterior of nuclear speckles, with Hsp70 transcripts accumulating within the speckle. Live-cell imaging reveals distinct dynamic events, with Hsp70 transgenes associating with ! adjacent speckles, nucleating new speckles, or moving to preexisting speckles. Our results call for reexamination of classical models of interphase chromosome organization.
  • hPOC5 is a centrin-binding protein required for assembly of full-length centrioles
    - J Cell Biol 185(1):101-114 (2009)
    Centrin has been shown to be involved in centrosome biogenesis in a variety of eukaryotes. In this study, we characterize hPOC5, a conserved centrin-binding protein that contains Sfi1p-like repeats. hPOC5 is localized, like centrin, in the distal portion of human centrioles. hPOC5 recruitment to procentrioles occurs during G2/M, a process that continues up to the full maturation of the centriole during the next cell cycle and is correlated with hyperphosphorylation of the protein. In the absence of hPOC5, RPE1 cells arrest in G1 phase, whereas HeLa cells show an extended S phase followed by cell death. We show that hPOC5 is not required for the initiation of procentriole assembly but is essential for building the distal half of centrioles. Interestingly, the hPOC5 family reveals an evolutionary divergence between vertebrates and organisms like Drosophila melanogaster or Caenorhabditis elegans, in which the loss of hPOC5 may correlate with the conspicuous differences in! centriolar structure.
  • miR-8 microRNAs regulate the response to osmotic stress in zebrafish embryos
    - J Cell Biol 185(1):115-127 (2009)
    MicroRNAs (miRNAs) are highly conserved small RNAs that act as translational regulators of gene expression, exerting their influence by selectively targeting mRNAs bearing complementary sequence elements. These RNAs function in diverse aspects of animal development and physiology. Because of an ability to act as rapid responders at the level of translation, miRNAs may also influence stress response. In this study, we show that the miR-8 family of miRNAs regulates osmoregulation in zebrafish embryos. Ionocytes, which are a specialized cell type scattered throughout the epidermis, are responsible for pH and ion homeostasis during early development before gill formation. The highly conserved miR-8 family is expressed in ionocytes and enables precise control of ion transport by modulating the expression of Nherf1, which is a regulator of apical trafficking of transmembrane ion transporters. Ultimately, disruption of miR-8 family member function leads to an inability to res! pond to osmotic stress and blocks the ability to properly traffic and/or cluster transmembrane glycoproteins at the apical surface of ionocytes.
  • Rhabdomere biogenesis in Drosophila photoreceptors is acutely sensitive to phosphatidic acid levels
    - J Cell Biol 185(1):129-145 (2009)
    Phosphatidic acid (PA) is postulated to have both structural and signaling functions during membrane dynamics in animal cells. In this study, we show that before a critical time period during rhabdomere biogenesis in Drosophila melanogaster photoreceptors, elevated levels of PA disrupt membrane transport to the apical domain. Lipidomic analysis shows that this effect is associated with an increase in the abundance of a single, relatively minor molecular species of PA. These transport defects are dependent on the activation state of Arf1. Transport defects via PA generated by phospholipase D require the activity of type I phosphatidylinositol (PI) 4 phosphate 5 kinase, are phenocopied by knockdown of PI 4 kinase, and are associated with normal endoplasmic reticulum to Golgi transport. We propose that PA levels are critical for apical membrane transport events required for rhabdomere biogenesis.
  • Integrin-linked kinase is required for radial sorting of axons and Schwann cell remyelination in the peripheral nervous system
    - J Cell Biol 185(1):147-161 (2009)
    During development, Schwann cells (SCs) interpret different extracellular cues to regulate their migration, proliferation, and the remarkable morphological changes associated with the sorting, ensheathment, and myelination of axons. Although interactions between extracellular matrix proteins and integrins are critical to some of these processes, the downstream signaling pathways they control are still poorly understood. Integrin-linked kinase (ILK) is a focal adhesion protein that associates with multiple binding partners to link integrins to the actin cytoskeleton and is thought to participate in integrin and growth factor-mediated signaling. Using SC-specific gene ablation, we report essential functions for ILK in radial sorting of axon bundles and in remyelination in the peripheral nervous system. Our in vivo and in vitro experiments show that ILK negatively regulates Rho/Rho kinase signaling to promote SC process extension and to initiate radial sorting. ILK also f! acilitates axon remyelination, likely by promoting the activation of downstream molecules such as AKT/protein kinase B.
  • The Na+/H+ exchanger NHE1 is required for directional migration stimulated via PDGFR-{alpha} in the primary cilium
    - J Cell Biol 185(1):163-176 (2009)
    We previously demonstrated that the primary cilium coordinates platelet-derived growth factor (PDGF) receptor (PDGFR) {alpha}-mediated migration in growth-arrested fibroblasts. In this study, we investigate the functional relationship between ciliary PDGFR-{alpha} and the Na+/H+ exchanger NHE1 in directional cell migration. NHE1 messenger RNA and protein levels are up-regulated in NIH3T3 cells and mouse embryonic fibroblasts (MEFs) during growth arrest, which is concomitant with cilium formation. NHE1 up-regulation is unaffected in Tg737orpk MEFs, which have no or very short primary cilia. In growth-arrested NIH3T3 cells, NHE1 is activated by the specific PDGFR-{alpha} ligand PDGF-AA. In wound-healing assays on growth-arrested NIH3T3 cells and wild-type MEFs, NHE1 inhibition by 5'-(N-ethyl-N-isopropyl) amiloride potently reduces PDGF-AA-mediated directional migration. These effects are strongly attenuated in interphase NIH3T3 cells, which are devoid of primary cilia, a! nd in Tg737orpk MEFs. PDGF-AA failed to stimulate migration in NHE1-null fibroblasts. In conclusion, stimulation of directional migration in response to ciliary PDGFR-{alpha} signals is specifically dependent on NHE1 activity, indicating that NHE1 activation is a critical event in the physiological response to PDGFR-{alpha} stimulation.

No comments: