Thursday, April 21, 2011

Hot off the presses! Apr 22 mol cell

The Apr 22 issue of the mol cell is now up on Pubget (About mol cell): if you're at a subscribing institution, just click the link in the latest link at the home page. (Note you'll only be able to get all the PDFs in the issue if your institution subscribes to Pubget.)

Latest Articles Include:

  • Pin-Pointing a New DAP Kinase Function: The Peptidyl-Proly Isomerase Pin1 Is Negatively Regulated by DAP Kinase-Mediated Phosphorylation
    - mol cell 42(2):139-141 (2011)
    In this issue of Molecular Cell, Lee et al. (2011) identify the peptidyl-prolyl isomerase Pin1 as a substrate of DAP kinase, simultaneously providing a critical regulatory mechanism for Pin1 inhibition and a potential mechanism that accounts for DAPK's tumor-suppressive activities.
  • DNA Damage Discrimination at Stalled Replication Forks by the Rad5 Homologs HLTF and SHPRH
    - mol cell 42(2):141-143 (2011)
    In this issue of Molecular Cell, Lin et al. (2011) describe how HLTF and SHPRH, the human homologs of yeast Rad5, can discriminate between MMS-induced versus UV-induced DNA damage. The results have important implications for the suppression of damage-specific mutagenesis and for the maintenance of genomic stability.
  • Going Nuclear: Transcribers in Transit
    - mol cell 42(2):143-145 (2011)
    Recent experiments have identified novel RNA polymerase-associated proteins with roles in assembly and nuclear transport of multisubunit eukaryotic RNA polymerases. In this issue of Molecular Cell, Czeko et al. (2011) characterize a novel Pol II transport factor that is conserved from yeast to humans.
  • Death-Associated Protein Kinase 1 Phosphorylates Pin1 and Inhibits Its Prolyl Isomerase Activity and Cellular Function
    - mol cell 42(2):147-159 (2011)
    Pin1 is a phospho-specific prolyl isomerase that regulates numerous key signaling molecules and whose deregulation contributes to disease notably cancer. However, since prolyl isomerases are often believed to be constitutively active, little is known whether and how Pin1 catalytic activity is regulated. Here, we identify death-associated protein kinase 1 (DAPK1), a known tumor suppressor, as a kinase responsible for phosphorylation of Pin1 on Ser71 in the catalytic active site. Such phosphorylation fully inactivates Pin1 catalytic activity and inhibits its nuclear location. Moreover, DAPK1 inhibits the ability of Pin1 to induce centrosome amplification and cell transformation. Finally, Pin1 pSer71 levels are positively correlated with DAPK1 levels and negatively with centrosome amplification in human breast cancer. Thus, phosphorylation of Pin1 Ser71 by DAPK1 inhibits its catalytic activity and cellular function, providing strong evidence for an essential role of the P! in1 enzymatic activity for its cellular function.
  • Yeast SREBP Cleavage Activation Requires the Golgi Dsc E3 Ligase Complex
    - mol cell 42(2):160-171 (2011)
    Mammalian lipid homeostasis requires proteolytic activation of membrane-bound sterol regulatory element binding protein (SREBP) transcription factors through sequential action of the Golgi Site-1 and Site-2 proteases. Here we report that while SREBP function is conserved in fungi, fission yeast employs a different mechanism for SREBP cleavage. Using genetics and biochemistry, we identified four genes defective for SREBP cleavage, dsc1-4, encoding components of a transmembrane Golgi E3 ligase complex with structural homology to the Hrd1 E3 ligase complex involved in endoplasmic reticulum-associated degradation. The Dsc complex binds SREBP and cleavage requires components of the ubiquitin-proteasome pathway: the E2-conjugating enzyme Ubc4, the Dsc1 RING E3 ligase, and the proteasome. dsc mutants display conserved aggravating genetic interactions with components of the multivesicular body pathway in fission yeast and budding yeast, which lacks SREBP. Together, these data ! suggest that the Golgi Dsc E3 ligase complex functions in a post-ER pathway for protein degradation.
  • Phosphate and R2D2 Restrict the Substrate Specificity of Dicer-2, an ATP-Driven Ribonuclease
    - mol cell 42(2):172-184 (2011)
    Drosophila Dicer-2 generates small interfering RNAs (siRNAs) from long double-stranded RNA (dsRNA), whereas Dicer-1 produces microRNAs (miRNAs) from pre-miRNA. What makes the two Dicers specific for their biological substrates? We find that purified Dicer-2 can efficiently cleave pre-miRNA, but that inorganic phosphate and the Dicer-2 partner protein R2D2 inhibit pre-miRNA cleavage. Dicer-2 contains C-terminal RNase III domains that mediate RNA cleavage and an N-terminal helicase motif, whose function is unclear. We show that Dicer-2 is a dsRNA-stimulated ATPase that hydrolyzes ATP to ADP; ATP hydrolysis is required for Dicer-2 to process long dsRNA, but not pre-miRNA. Wild-type Dicer-2, but not a mutant defective in ATP hydrolysis, can generate siRNAs faster than it can dissociate from a long dsRNA substrate. We propose that the Dicer-2 helicase domain uses ATP to generate many siRNAs from a single molecule of dsRNA before dissociating from its substrate.
  • SON Controls Cell-Cycle Progression by Coordinated Regulation of RNA Splicing
    - mol cell 42(2):185-198 (2011)
    It has been suspected that cell-cycle progression might be functionally coupled with RNA processing. However, little is known about the role of the precise splicing control in cell-cycle progression. Here, we report that SON, a large Ser/Arg (SR)-related protein, is a splicing cofactor contributing to efficient splicing of cell-cycle regulators. Downregulation of SON leads to severe impairment of spindle pole separation, microtubule dynamics, and genome integrity. These molecular defects result from inadequate RNA splicing of a specific set of cell-cycle-related genes that possess weak splice sites. Furthermore, we show that SON facilitates the interaction of SR proteins with RNA polymerase II and other key spliceosome components, suggesting its function in efficient cotranscriptional RNA processing. These results reveal a mechanism for controlling cell-cycle progression through SON-dependent constitutive splicing at suboptimal splice sites, with strong implications fo! r its role in cancer and other human diseases.
  • A Strategy for Antagonizing Quorum Sensing
    - mol cell 42(2):199-209 (2011)
    Quorum-sensing bacteria communicate via small molecules called autoinducers to coordinate collective behaviors. Because quorum sensing controls virulence factor expression in many clinically relevant pathogens, membrane-permeable quorum sensing antagonists that prevent population-wide expression of virulence genes offer a potential route to novel antibacterial therapeutics. Here, we report a strategy for inhibiting quorum-sensing receptors of the widespread LuxR family. Structure-function studies with natural and synthetic ligands demonstrate that the dimeric LuxR-type transcription factor CviR from Chromobacterium violaceum is potently antagonized by molecules that bind in place of the native acylated homoserine lactone autoinducer, provided that they stabilize a closed conformation. In such conformations, each of the two DNA-binding domains interacts with the ligand-binding domain of the opposing monomer. Consequently, the DNA-binding helices are held apart by 60 Å,! twice the 30 Å separation required for operator binding. This approach may represent a general strategy for the inhibition of multidomain proteins.
  • Stabilization of Suv39H1 by SirT1 Is Part of Oxidative Stress Response and Ensures Genome Protection
    - mol cell 42(2):210-223 (2011)
    Sirtuins are NAD-dependent deacetylases that sense oxidative stress conditions and promote a protective cellular response. The Sirtuin SirT1 is involved in facultative heterochromatin formation through an intimate functional relationship with the H3K9me3 methyltransferase Suv39h1, a chromatin organization protein. However, SirT1 also regulates Suv39h1-dependent constitutive heterochromatin (CH) through an unknown mechanism; interestingly, SirT1 does not significantly localize in these regions. Herein, we report that SirT1 controls global levels of Suv39h1 by increasing its half-life through inhibition of Suv39h1 lysine 87 polyubiquitination by the E3-ubiquitin ligase MDM2. This in turn increases Suv39h1 turnover in CH and ensures genome integrity. Stress conditions that lead to SirT1 upregulation, such as calorie restriction, also induce higher levels of Suv39h1 in a SirT1-dependent manner in vivo. These observations reflect a direct link between oxidative stress respo! nse and Suv39h1 and support a dynamic view of heterochromatin, in which its structure adapts to cell physiology.
  • Mammalian 5′ C-Rich Telomeric Overhangs Are a Mark of Recombination-Dependent Telomere Maintenance
    - mol cell 42(2):224-236 (2011)
    Recent evidence for 5′-cytosine (C)-rich overhangs at the telomeres of the nematode Caenorhabditis elegans provided the impetus to re-examine the end structure of mammalian telomeres. Two-dimensional (2D) gel electrophoresis, single telomere-length analysis (STELA), and strand-specific exonuclease assays revealed the presence of a 5′-C-rich overhang at the telomeres of human and mouse chromosomes. C-overhangs were prominent in G1/S arrested as well as terminally differentiated cells, indicating that they did not represent replication intermediates. C-rich overhangs were far more prevalent in tumor cells engaged in the alternative lengthening of telomeres (ALT) pathway of telomere maintenance, which relies on the homologous recombination (HR) machinery. Transient siRNA-based depletion of the HR-specific proteins RAD51, RAD52, and XRCC3 resulted in changes in C-overhang levels, implicating the involvement of 5′-C-overhangs in the HR-dependent pathway of telomere ma! intenance.
  • SHPRH and HLTF Act in a Damage-Specific Manner to Coordinate Different Forms of Postreplication Repair and Prevent Mutagenesis
    - mol cell 42(2):237-249 (2011)
    Postreplication repair (PRR) pathways play important roles in restarting stalled replication forks and regulating mutagenesis. In yeast, Rad5-mediated damage avoidance and Rad18-mediated translesion synthesis (TLS) are two forms of PRR. Two Rad5-related proteins, SHPRH and HLTF, have been identified in mammalian cells, but their specific roles in PRR are unclear. Here, we show that HLTF and SHPRH suppress mutagenesis in a damage-specific manner, preventing mutations induced by UV and MMS, respectively. Following UV, HLTF enhances PCNA monoubiquitination and recruitment of TLS polymerase η, while also inhibiting SHPRH function. In contrast, MMS promotes the degradation of HLTF and the interactions of SHPRH with Rad18 and polymerase κ. Our data suggest not only that cells differentially utilize HLTF and SHPRH for different forms of DNA damage, but also, surprisingly, that HLTF and SHPRH may coordinate the two main branches of PRR to choose the proper bypass mechanism f! or minimizing mutagenesis.
  • A De Novo Protein Binding Pair By Computational Design and Directed Evolution
    - mol cell 42(2):250-260 (2011)
    The de novo design of protein-protein interfaces is a stringent test of our understanding of the principles underlying protein-protein interactions and would enable unique approaches to biological and medical challenges. Here we describe a motif-based method to computationally design protein-protein complexes with native-like interface composition and interaction density. Using this method we designed a pair of proteins, Prb and Pdar, that heterodimerize with a Kd of 130 nM, 1000-fold tighter than any previously designed de novo protein-protein complex. Directed evolution identified two point mutations that improve affinity to 180 pM. Crystal structures of an affinity-matured complex reveal binding is entirely through the designed interface residues. Surprisingly, in the in vitro evolved complex one of the partners is rotated 180° relative to the original design model, yet still maintains the central computationally designed hotspot interaction and preserves the chara! cter of many peripheral interactions. This work demonstrates that high-affinity protein interfaces can be created by designing complementary interaction surfaces on two noninteracting partners and underscores remaining challenges.
  • Iwr1 Directs RNA Polymerase II Nuclear Import
    - mol cell 42(2):261-266 (2011)
    RNA polymerase (Pol) II transcribes protein-coding genes in the nucleus of eukaryotic cells and consists of 12 polypeptide subunits. It is unknown how Pol II is imported into the nucleus. Here we show that Pol II nuclear import requires the protein Iwr1 and provide evidence for cyclic Iwr1 function. Iwr1 binds Pol II in the active center cleft between the two largest subunits, maybe facilitating or sensing complete Pol II assembly in the cytoplasm. Iwr1 then uses an N-terminal bipartite nuclear localization signal that is recognized by karyopherin α to direct Pol II nuclear import. In the nucleus, Iwr1 is displaced from Pol II by transcription initiation factors and nucleic acids, enabling its export and recycling. Iwr1 function is Pol II specific, transcription independent, and apparently conserved from yeast to human.

No comments: