Monday, June 29, 2009

Hot off the presses! Jun 30 PLoS Biol

The Jun 30 issue of the PLoS Biol is now up on Pubget (About PLoS Biol): if you're at a subscribing institution, just click the link in the latest link at the home page. (Note you'll only be able to get all the PDFs in the issue if your institution subscribes to Pubget.)

Latest Articles Include:

  • Bad Taste Protects Fruit Flies from Eating a Toxic Amino Acid in Plants
    - PLoS Biol 7(6):e1000128 (2009)
  • Engineering Sexless Seeds as a Path to High-Yield Crops
    - PLoS Biol 7(6):e1000118 (2009)
  • Change for the Better: Phosphoregulation of Proteins Drives Evolution
    - PLoS Biol 7(6):e1000127 (2009)
  • Zap1 Sticks It to Candida Biofilms
    - PLoS Biol 7(6):e1000117 (2009)
  • The Hedgehog Signaling Pathway: Where Did It Come From?
    - PLoS Biol 7(6):e1000146 (2009)
  • Mind the Gap!
    - PLoS Biol 7(6):e122 (2009)
  • Parks and Tourism
    - PLoS Biol 7(6):e1000143 (2009)
  • Light, Sleep, and Circadian Rhythms: Together Again
    Dijk DJ Archer SN - PLoS Biol 7(6):e1000145 (2009)
  • The Finer Points of Filopodia
    - PLoS Biol 7(6):e1000142 (2009)
  • A Global Perspective on Trends in Nature-Based Tourism
    - PLoS Biol 7(6):e1000144 (2009)
    Reports of rapid growth in nature-based tourism and recreation add significant weight to the economic case for biodiversity conservation but seem to contradict widely voiced concerns that people are becoming increasingly isolated from nature. This apparent paradox has been highlighted by a recent study showing that on a per capita basis, visits to natural areas in the United States and Japan have declined over the last two decades. These results have been cited as evidence of "a fundamental and pervasive shift away from nature-based recreation"—but how widespread is this phenomenon? We address this question by looking at temporal trends in visitor numbers at 280 protected areas (PAs) from 20 countries. This more geographically representative dataset shows that while PA visitation (whether measured as total or per capita visit numbers) is indeed declining in the United States and Japan, it is generally increasing elsewhere. Total visit numbers are growing in 15 of! the 20 countries for which we could get data, with the median national rate of change unrelated to the national rate of population growth but negatively associated with wealth. Reasons for this reversal of growth in the richest countries are difficult to pin down with existing data, but the pattern is mirrored by trends in international tourist arrivals as a whole and so may not necessarily be caused by disaffection with nature. Irrespective of the explanation, it is clear that despite important downturns in some countries, nature-related tourism is far from declining everywhere, and may still have considerable potential both to generate funds for conservation and to shape people's attitudes to the environment.
  • Management Effectiveness of the World's Marine Fisheries
    Mora C Myers RA Coll M Libralato S Pitcher TJ Sumaila RU Zeller D Watson R Gaston KJ Worm B - PLoS Biol 7(6):e1000131 (2009)
    Ongoing declines in production of the world's fisheries may have serious ecological and socioeconomic consequences. As a result, a number of international efforts have sought to improve management and prevent overexploitation, while helping to maintain biodiversity and a sustainable food supply. Although these initiatives have received broad acceptance, the extent to which corrective measures have been implemented and are effective remains largely unknown. We used a survey approach, validated with empirical data, and enquiries to over 13,000 fisheries experts (of which 1,188 responded) to assess the current effectiveness of fisheries management regimes worldwide; for each of those regimes, we also calculated the probable sustainability of reported catches to determine how management affects fisheries sustainability. Our survey shows that 7% of all coastal states undergo rigorous scientific assessment for the generation of management policies, 1.4% also have a participa! tory and transparent processes to convert scientific recommendations into policy, and 0.95% also provide for robust mechanisms to ensure the compliance with regulations; none is also free of the effects of excess fishing capacity, subsidies, or access to foreign fishing. A comparison of fisheries management attributes with the sustainability of reported fisheries catches indicated that the conversion of scientific advice into policy, through a participatory and transparent process, is at the core of achieving fisheries sustainability, regardless of other attributes of the fisheries. Our results illustrate the great vulnerability of the world's fisheries and the urgent need to meet well-identified guidelines for sustainable management; they also provide a baseline against which future changes can be quantified.
  • Allometry of the Duration of Flight Feather Molt in Birds
    Rohwer S Ricklefs RE Rohwer VG Copple MM - PLoS Biol 7(6):e1000132 (2009)
    We used allometric scaling to explain why the regular replacement of the primary flight feathers requires disproportionately more time for large birds. Primary growth rate scales to mass (M) as M0.171, whereas the summed length of the primaries scales almost twice as fast (M0.316). The ratio of length (mm) to rate (mm/day), which would be the time needed to replace all the primaries one by one, increases as the 0.14 power of mass (M0.316/M0.171 = M0.145), illustrating why the time required to replace the primaries is so important to life history evolution in large birds. Smaller birds generally replace all their flight feathers annually, but larger birds that fly while renewing their primaries often extend the primary molt over two or more years. Most flying birds exhibit one of three fundamentally different modes of primary replacement, and the size distributions of birds associated with these replacement modes suggest that birds that replace their primaries in a ! single wave of molt cannot approach the size of the largest flying birds without first transitioning to a more complex mode of primary replacement. Finally, we propose two models that could account for the 1/6 power allometry between feather growth rate and body mass, both based on a length-to-surface relationship that transforms the linear, cylindrical growing region responsible for producing feather tissue into an essentially two-dimensional structure. These allometric relationships offer a general explanation for flight feather replacement requiring disproportionately more time for large birds.
  • Melanopsin as a Sleep Modulator: Circadian Gating of the Direct Effects of Light on Sleep and Altered Sleep Homeostasis in Opn4−/− Mice
    Tsai JW Hannibal J Hagiwara G Colas D Ruppert E Ruby NF Heller HC Franken P Bourgin P - PLoS Biol 7(6):e1000125 (2009)
    Light influences sleep and alertness either indirectly through a well-characterized circadian pathway or directly through yet poorly understood mechanisms. Melanopsin (Opn4) is a retinal photopigment crucial for conveying nonvisual light information to the brain. Through extensive characterization of sleep and the electrocorticogram (ECoG) in melanopsin-deficient (Opn4−/−) mice under various light–dark (LD) schedules, we assessed the role of melanopsin in mediating the effects of light on sleep and ECoG activity. In control mice, a light pulse given during the habitual dark period readily induced sleep, whereas a dark pulse given during the habitual light period induced waking with pronounced theta (7–10 Hz) and gamma (40–70 Hz) activity, the ECoG correlates of alertness. In contrast, light failed to induce sleep in Opn4−/− mice, and the dark-pulse-induced increase in theta and gamma activity was delayed. A 24-h recording under a LD 1-h∶1-h schedule rev! ealed that the failure to respond to light in Opn4−/− mice was restricted to the subjective dark period. Light induced c-Fos immunoreactivity in the suprachiasmatic nuclei (SCN) and in sleep-active ventrolateral preoptic (VLPO) neurons was importantly reduced in Opn4−/− mice, implicating both sleep-regulatory structures in the melanopsin-mediated effects of light. In addition to these acute light effects, Opn4−/− mice slept 1 h less during the 12-h light period of a LD 12∶12 schedule owing to a lengthening of waking bouts. Despite this reduction in sleep time, ECoG delta power, a marker of sleep need, was decreased in Opn4−/− mice for most of the (subjective) dark period. Delta power reached after a 6-h sleep deprivation was similarly reduced in Opn4−/− mice. In mice, melanopsin's contribution to the direct effects of light on sleep is limited to the dark or active period, suggesting that at this circadian phase, melanopsin compensates for circadian va! riations in the photo sensitivity of other light-encoding path! ways such as rod and cones. Our study, furthermore, demonstrates that lack of melanopsin alters sleep homeostasis. These findings call for a reevaluation of the role of light on mammalian physiology and behavior.
  • Interaction between Attention and Bottom-Up Saliency Mediates the Representation of Foreground and Background in an Auditory Scene
    Elhilali M Xiang J Shamma SA Simon JZ - PLoS Biol 7(6):e1000129 (2009)
    The mechanism by which a complex auditory scene is parsed into coherent objects depends on poorly understood interactions between task-driven and stimulus-driven attentional processes. We illuminate these interactions in a simultaneous behavioral–neurophysiological study in which we manipulate participants' attention to different features of an auditory scene (with a regular target embedded in an irregular background). Our experimental results reveal that attention to the target, rather than to the background, correlates with a sustained (steady-state) increase in the measured neural target representation over the entire stimulus sequence, beyond auditory attention's well-known transient effects on onset responses. This enhancement, in both power and phase coherence, occurs exclusively at the frequency of the target rhythm, and is only revealed when contrasting two attentional states that direct participants' focus to different features of the acoustic stimulus. The ! enhancement originates in auditory cortex and covaries with both behavioral task and the bottom-up saliency of the target. Furthermore, the target's perceptual detectability improves over time, correlating strongly, within participants, with the target representation's neural buildup. These results have substantial implications for models of foreground/background organization, supporting a role of neuronal temporal synchrony in mediating auditory object formation.
  • Attention Enhances the Retrieval and Stability of Visuospatial and Olfactory Representations in the Dorsal Hippocampus
    - PLoS Biol 7(6):e1000140 (2009)
    A key question in the analysis of hippocampal memory relates to how attention modulates the encoding and long-term retrieval of spatial and nonspatial representations in this region. To address this question, we recorded from single cells over a period of 5 days in the CA1 region of the dorsal hippocampus while mice acquired one of two goal-oriented tasks. These tasks required the animals to find a hidden food reward by attending to either the visuospatial environment or a particular odor presented in shifting spatial locations. Attention to the visuospatial environment increased the stability of visuospatial representations and phase locking to gamma oscillations—a form of neuronal synchronization thought to underlie the attentional mechanism necessary for processing task-relevant information. Attention to a spatially shifting olfactory cue compromised the stability of place fields and increased the stability of reward-associated odor representations, which were mos! t consistently retrieved during periods of sniffing and digging when animals were restricted to the cup locations. Together, these results suggest that attention selectively modulates the encoding and retrieval of hippocampal representations by enhancing physiological responses to task-relevant information.
  • Long-Term Relationships between Synaptic Tenacity, Synaptic Remodeling, and Network Activity
    Minerbi A Kahana R Goldfeld L Kaufman M Marom S Ziv NE - PLoS Biol 7(6):e1000136 (2009)
    Synaptic plasticity is widely believed to constitute a key mechanism for modifying functional properties of neuronal networks. This belief implicitly implies, however, that synapses, when not driven to change their characteristics by physiologically relevant stimuli, will maintain these characteristics over time. How tenacious are synapses over behaviorally relevant time scales? To begin to address this question, we developed a system for continuously imaging the structural dynamics of individual synapses over many days, while recording network activity in the same preparations. We found that in spontaneously active networks, distributions of synaptic sizes were generally stable over days. Following individual synapses revealed, however, that the apparently static distributions were actually steady states of synapses exhibiting continual and extensive remodeling. In active networks, large synapses tended to grow smaller, whereas small synapses tended to grow larger, ma! inly during periods of particularly synchronous activity. Suppression of network activity only mildly affected the magnitude of synaptic remodeling, but dependence on synaptic size was lost, leading to the broadening of synaptic size distributions and increases in mean synaptic size. From the perspective of individual neurons, activity drove changes in the relative sizes of their excitatory inputs, but such changes continued, albeit at lower rates, even when network activity was blocked. Our findings show that activity strongly drives synaptic remodeling, but they also show that significant remodeling occurs spontaneously. Whereas such spontaneous remodeling provides an explanation for "synaptic homeostasis" like processes, it also raises significant questions concerning the reliability of individual synapses as sites for persistently modifying network function.
  • Positional Cues in the Drosophila Nerve Cord: Semaphorins Pattern the Dorso-Ventral Axis
    Zlatic M Li F Strigini M Grueber W Bate M - PLoS Biol 7(6):e1000135 (2009)
    During the development of neural circuitry, neurons of different kinds establish specific synaptic connections by selecting appropriate targets from large numbers of alternatives. The range of alternative targets is reduced by well organised patterns of growth, termination, and branching that deliver the terminals of appropriate pre- and postsynaptic partners to restricted volumes of the developing nervous system. We use the axons of embryonic Drosophila sensory neurons as a model system in which to study the way in which growing neurons are guided to terminate in specific volumes of the developing nervous system. The mediolateral positions of sensory arbors are controlled by the response of Robo receptors to a Slit gradient. Here we make a genetic analysis of factors regulating position in the dorso-ventral axis. We find that dorso-ventral layers of neuropile contain different levels and combinations of Semaphorins. We demonstrate the existence of a central to dorsal ! and central to ventral gradient of Sema 2a, perpendicular to the Slit gradient. We show that a combination of Plexin A (Plex A) and Plexin B (Plex B) receptors specifies the ventral projection of sensory neurons by responding to high concentrations of Semaphorin 1a (Sema 1a) and Semaphorin 2a (Sema 2a). Together our findings support the idea that axons are delivered to particular regions of the neuropile by their responses to systems of positional cues in each dimension.
  • Eps8 Regulates Axonal Filopodia in Hippocampal Neurons in Response to Brain-Derived Neurotrophic Factor (BDNF)
    - PLoS Biol 7(6):e1000138 (2009)
    The regulation of filopodia plays a crucial role during neuronal development and synaptogenesis. Axonal filopodia, which are known to originate presynaptic specializations, are regulated in response to neurotrophic factors. The structural components of filopodia are actin filaments, whose dynamics and organization are controlled by ensembles of actin-binding proteins. How neurotrophic factors regulate these latter proteins remains, however, poorly defined. Here, using a combination of mouse genetic, biochemical, and cell biological assays, we show that genetic removal of Eps8, an actin-binding and regulatory protein enriched in the growth cones and developing processes of neurons, significantly augments the number and density of vasodilator-stimulated phosphoprotein (VASP)-dependent axonal filopodia. The reintroduction of Eps8 wild type (WT), but not an Eps8 capping-defective mutant, into primary hippocampal neurons restored axonal filopodia to WT levels. We further sh! ow that the actin barbed-end capping activity of Eps8 is inhibited by brain-derived neurotrophic factor (BDNF) treatment through MAPK-dependent phosphorylation of Eps8 residues S624 and T628. Additionally, an Eps8 mutant, impaired in the MAPK target sites (S624A/T628A), displays increased association to actin-rich structures, is resistant to BDNF-mediated release from microfilaments, and inhibits BDNF-induced filopodia. The opposite is observed for a phosphomimetic Eps8 (S624E/T628E) mutant. Thus, collectively, our data identify Eps8 as a critical capping protein in the regulation of axonal filopodia and delineate a molecular pathway by which BDNF, through MAPK-dependent phosphorylation of Eps8, stimulates axonal filopodia formation, a process with crucial impacts on neuronal development and synapse formation.
  • Regulation of Mammary Stem/Progenitor Cells by PTEN/Akt/β-Catenin Signaling
    Korkaya H Paulson A Charafe-Jauffret E Ginestier C Brown M Dutcher J Clouthier SG Wicha MS - PLoS Biol 7(6):e1000121 (2009)
    Recent evidence suggests that many malignancies, including breast cancer, are driven by a cellular subcomponent that displays stem cell-like properties. The protein phosphatase and tensin homolog (PTEN) is inactivated in a wide range of human cancers, an alteration that is associated with a poor prognosis. Because PTEN has been reported to play a role in the maintenance of embryonic and tissue-specific stem cells, we investigated the role of the PTEN/Akt pathway in the regulation of normal and malignant mammary stem/progenitor cell populations. We demonstrate that activation of this pathway, via PTEN knockdown, enriches for normal and malignant human mammary stem/progenitor cells in vitro and in vivo. Knockdown of PTEN in normal human mammary epithelial cells enriches for the stem/progenitor cell compartment, generating atypical hyperplastic lesions in humanized NOD/SCID mice. Akt-driven stem/progenitor cell enrichment is mediated by activation of the Wnt/β-catenin pa! thway through the phosphorylation of GSK3-β. In contrast to chemotherapy, the Akt inhibitor perifosine is able to target the tumorigenic cell population in breast tumor xenografts. These studies demonstrate an important role for the PTEN/PI3-K/Akt/β-catenin pathway in the regulation of normal and malignant stem/progenitor cell populations and suggest that agents that inhibit this pathway are able to effectively target tumorigenic breast cancer cells.
  • Direct Binding of pRb/E2F-2 to GATA-1 Regulates Maturation and Terminal Cell Division during Erythropoiesis
    Kadri Z Shimizu R Ohneda O Maouche-Chretien L Gisselbrecht S Yamamoto M Romeo PH Leboulch P Chretien S - PLoS Biol 7(6):e1000123 (2009)
    How cell proliferation subsides as cells terminally differentiate remains largely enigmatic, although this phenomenon is central to the existence of multicellular organisms. Here, we show that GATA-1, the master transcription factor of erythropoiesis, forms a tricomplex with the retinoblastoma protein (pRb) and E2F-2. This interaction requires a LXCXE motif that is evolutionary conserved among GATA-1 orthologs yet absent from the other GATA family members. GATA-1/pRb/E2F-2 complex formation stalls cell proliferation and steers erythroid precursors towards terminal differentiation. This process can be disrupted in vitro by FOG-1, which displaces pRb/E2F-2 from GATA-1. A GATA-1 mutant unable to bind pRb fails to inhibit cell proliferation and results in mouse embryonic lethality by anemia. These findings clarify the previously suspected cell-autonomous role of pRb during erythropoiesis and may provide a unifying molecular mechanism for several mouse phenotypes and human ! diseases associated with GATA-1 mutations.
  • Plant Insecticide L-Canavanine Repels Drosophila via the Insect Orphan GPCR DmX
    - PLoS Biol 7(6):e1000147 (2009)
    For all animals, the taste sense is crucial to detect and avoid ingesting toxic molecules. Many toxins are synthesized by plants as a defense mechanism against insect predation. One example of such a natural toxic molecule is l-canavanine, a nonprotein amino acid found in the seeds of many legumes. Whether and how insects are informed that some plants contain l-canavanine remains to be elucidated. In insects, the taste sense relies on gustatory receptors forming the gustatory receptor (Gr) family. Gr proteins display highly divergent sequences, suggesting that they could cover the entire range of tastants. However, one cannot exclude the possibility of evolutionarily independent taste receptors. Here, we show that l-canavanine is not only toxic, but is also a repellent for Drosophila. Using a pharmacogenetic approach, we find that flies sense food containing this poison by the DmX receptor. DmXR is an insect orphan G-protein–coupled receptor that has partially diverg! ed in its ligand binding pocket from the metabotropic glutamate receptor family. Blockade of DmXR function with an antagonist lowers the repulsive effect of l-canavanine. In addition, disruption of the DmXR encoding gene, called mangetout (mtt), suppresses the l-canavanine repellent effect. To avoid the ingestion of l-canavanine, DmXR expression is required in bitter-sensitive gustatory receptor neurons, where it triggers the premature retraction of the proboscis, thus leading to the end of food searching. These findings show that the DmX receptor, which does not belong to the Gr family, fulfills a gustatory function necessary to avoid eating a natural toxin.
  • RIN4 Functions with Plasma Membrane H+-ATPases to Regulate Stomatal Apertures during Pathogen Attack
    - PLoS Biol 7(6):e1000139 (2009)
    Pathogen perception by the plant innate immune system is of central importance to plant survival and productivity. The Arabidopsis protein RIN4 is a negative regulator of plant immunity. In order to identify additional proteins involved in RIN4-mediated immune signal transduction, we purified components of the RIN4 protein complex. We identified six novel proteins that had not previously been implicated in RIN4 signaling, including the plasma membrane (PM) H+-ATPases AHA1 and/or AHA2. RIN4 interacts with AHA1 and AHA2 both in vitro and in vivo. RIN4 overexpression and knockout lines exhibit differential PM H+-ATPase activity. PM H+-ATPase activation induces stomatal opening, enabling bacteria to gain entry into the plant leaf; inactivation induces stomatal closure thus restricting bacterial invasion. The rin4 knockout line exhibited reduced PM H+-ATPase activity and, importantly, its stomata could not be re-opened by virulent Pseudomonas syringae. We also demonstrate t! hat RIN4 is expressed in guard cells, highlighting the importance of this cell type in innate immunity. These results indicate that the Arabidopsis protein RIN4 functions with the PM H+-ATPase to regulate stomatal apertures, inhibiting the entry of bacterial pathogens into the plant leaf during infection.
  • Turning Meiosis into Mitosis
    d'Erfurth I Jolivet S Froger N Catrice O Novatchkova M Mercier R - PLoS Biol 7(6):e1000124 (2009)
    Apomixis, or asexual clonal reproduction through seeds, is of immense interest due to its potential application in agriculture. One key element of apomixis is apomeiosis, a deregulation of meiosis that results in a mitotic-like division. We isolated and characterised a novel gene that is directly involved in controlling entry into the second meiotic division. By combining a mutation in this gene with two others that affect key meiotic processes, we created a genotype called MiMe in which meiosis is totally replaced by mitosis. The obtained plants produce functional diploid gametes that are genetically identical to their mother. The creation of the MiMe genotype and apomeiosis phenotype is an important step towards understanding and engineering apomixis.
  • Evolution of Phosphoregulation: Comparison of Phosphorylation Patterns across Yeast Species
    Beltrao P Trinidad JC Fiedler D Roguev A Lim WA Shokat KM Burlingame AL Krogan NJ - PLoS Biol 7(6):e1000134 (2009)
    The extent by which different cellular components generate phenotypic diversity is an ongoing debate in evolutionary biology that is yet to be addressed by quantitative comparative studies. We conducted an in vivo mass-spectrometry study of the phosphoproteomes of three yeast species (Saccharomyces cerevisiae, Candida albicans, and Schizosaccharomyces pombe) in order to quantify the evolutionary rate of change of phosphorylation. We estimate that kinase–substrate interactions change, at most, two orders of magnitude more slowly than transcription factor (TF)–promoter interactions. Our computational analysis linking kinases to putative substrates recapitulates known phosphoregulation events and provides putative evolutionary histories for the kinase regulation of protein complexes across 11 yeast species. To validate these trends, we used the E-MAP approach to analyze over 2,000 quantitative genetic interactions in S. cerevisiae and Sc. pombe, which demonstrated tha! t protein kinases, and to a greater extent TFs, show lower than average conservation of genetic interactions. We propose therefore that protein kinases are an important source of phenotypic diversity.
  • Biofilm Matrix Regulation by Candida albicans Zap1
    Nobile CJ Nett JE Hernday AD Homann OR Deneault JS Nantel A Andes DR Johnson AD Mitchell AP - PLoS Biol 7(6):e1000133 (2009)
    A biofilm is a surface-associated population of microorganisms embedded in a matrix of extracellular polymeric substances. Biofilms are a major natural growth form of microorganisms and the cause of pervasive device-associated infection. This report focuses on the biofilm matrix of Candida albicans, the major fungal pathogen of humans. We report here that the C. albicans zinc-response transcription factor Zap1 is a negative regulator of a major matrix component, soluble β-1,3 glucan, in both in vitro and in vivo biofilm models. To understand the mechanistic relationship between Zap1 and matrix, we identified Zap1 target genes through expression profiling and full genome chromatin immunoprecipitation. On the basis of these results, we designed additional experiments showing that two glucoamylases, Gca1 and Gca2, have positive roles in matrix production and may function through hydrolysis of insoluble β-1,3 glucan chains. We also show that a group of alcohol dehydrogen! ases Adh5, Csh1, and Ifd6 have roles in matrix production: Adh5 acts positively, and Csh1 and Ifd6, negatively. We propose that these alcohol dehydrogenases generate quorum-sensing aryl and acyl alcohols that in turn govern multiple events in biofilm maturation. Our findings define a novel regulatory circuit and its mechanism of control of a process central to infection.
  • Self-Organization of the Escherichia coli Chemotaxis Network Imaged with Super-Resolution Light Microscopy
    Greenfield D McEvoy AL Shroff H Crooks GE Wingreen NS Betzig E Liphardt J - PLoS Biol 7(6):e1000137 (2009)
    The Escherichia coli chemotaxis network is a model system for biological signal processing. In E. coli, transmembrane receptors responsible for signal transduction assemble into large clusters containing several thousand proteins. These sensory clusters have been observed at cell poles and future division sites. Despite extensive study, it remains unclear how chemotaxis clusters form, what controls cluster size and density, and how the cellular location of clusters is robustly maintained in growing and dividing cells. Here, we use photoactivated localization microscopy (PALM) to map the cellular locations of three proteins central to bacterial chemotaxis (the Tar receptor, CheY, and CheW) with a precision of 15 nm. We find that cluster sizes are approximately exponentially distributed, with no characteristic cluster size. One-third of Tar receptors are part of smaller lateral clusters and not of the large polar clusters. Analysis of the relative cellular locations of 1! .1 million individual proteins (from 326 cells) suggests that clusters form via stochastic self-assembly. The super-resolution PALM maps of E. coli receptors support the notion that stochastic self-assembly can create and maintain approximately periodic structures in biological membranes, without direct cytoskeletal involvement or active transport.
  • ATP and MO25α Regulate the Conformational State of the STRADα Pseudokinase and Activation of the LKB1 Tumour Suppressor
    Zeqiraj E Filippi BM Goldie S Navratilova I Boudeau J Deak M Alessi DR van Aalten DM - PLoS Biol 7(6):e1000126 (2009)
    Pseudokinases lack essential residues for kinase activity, yet are emerging as important regulators of signal transduction networks. The pseudokinase STRAD activates the LKB1 tumour suppressor by forming a heterotrimeric complex with LKB1 and the scaffolding protein MO25. Here, we describe the structure of STRADα in complex with MO25α. The structure reveals an intricate web of interactions between STRADα and MO25α involving the αC-helix of STRADα, reminiscent of the mechanism by which CDK2 interacts with cyclin A. Surprisingly, STRADα binds ATP and displays a closed conformation and an ordered activation loop, typical of active protein kinases. Inactivity is accounted for by nonconservative substitution of almost all essential catalytic residues. We demonstrate that binding of ATP enhances the affinity of STRADα for MO25α, and conversely, binding of MO25α promotes interaction of STRADα with ATP. Mutagenesis studies reveal that association of STRADα with eit! her ATP or MO25α is essential for LKB1 activation. We conclude that ATP and MO25α cooperate to maintain STRADα in an "active" closed conformation required for LKB1 activation. It has recently been demonstrated that a mutation in human STRADα that truncates a C-terminal region of the pseudokinase domain leads to the polyhydramnios, megalencephaly, symptomatic epilepsy (PMSE) syndrome. We demonstrate this mutation destabilizes STRADα and prevents association with LKB1. In summary, our findings describe one of the first structures of a genuinely inactive pseudokinase. The ability of STRADα to activate LKB1 is dependent on a closed "active" conformation, aided by ATP and MO25α binding. Thus, the function of STRADα is mediated through an active kinase conformation rather than kinase activity. It is possible that other pseudokinases exert their function through nucleotide binding and active conformations.
  • Crystal Structure of a Yeast Aquaporin at 1.15 Å Reveals a Novel Gating Mechanism
    Fischer G Kosinska-Eriksson U Aponte-Santamaría C Palmgren M Geijer C Hedfalk K Hohmann S de Groot BL Neutze R Lindkvist-Petersson K - PLoS Biol 7(6):e1000130 (2009)
    Aquaporins are transmembrane proteins that facilitate the flow of water through cellular membranes. An unusual characteristic of yeast aquaporins is that they frequently contain an extended N terminus of unknown function. Here we present the X-ray structure of the yeast aquaporin Aqy1 from Pichia pastoris at 1.15 Å resolution. Our crystal structure reveals that the water channel is closed by the N terminus, which arranges as a tightly wound helical bundle, with Tyr31 forming H-bond interactions to a water molecule within the pore and thereby occluding the channel entrance. Nevertheless, functional assays show that Aqy1 has appreciable water transport activity that aids survival during rapid freezing of P. pastoris. These findings establish that Aqy1 is a gated water channel. Mutational studies in combination with molecular dynamics simulations imply that gating may be regulated by a combination of phosphorylation and mechanosensitivity.

No comments: