Latest Articles Include:
- Stress Select
- mol cell 40(2):173-174 (2010)
In this Select, we present recent work on the molecular mechanisms that underlie diverse cellular stress responses, covering pathways that affect the fundamental processes of DNA synthesis, DNA repair, translation, and protein turnover. These mechanisms highlight the array of strategies that cells use to cope with their ever-changing environments. - Cellular Stress Responses: A Balancing Act
- mol cell 40(2):175 (2010)
- Stress in Biomedical Research: Six Impossible Things
- mol cell 40(2):176-178 (2010)
Biomedical research may not be more stressful than other disciplines, but our stress is compounded by some of the inherent features of biology. We consider six impossible things and what we might be able to do about them, provided they are believed by lunchtime or, with practice, before breakfast. - The DNA Damage Response: Making It Safe to Play with Knives
- mol cell 40(2):179-204 (2010)
Damage to our genetic material is an ongoing threat to both our ability to faithfully transmit genetic information to our offspring as well as our own survival. To respond to these threats, eukaryotes have evolved the DNA damage response (DDR). The DDR is a complex signal transduction pathway that has the ability to sense DNA damage and transduce this information to the cell to influence cellular responses to DNA damage. Cells possess an arsenal of enzymatic tools capable of remodeling and repairing DNA; however, their activities must be tightly regulated in a temporal, spatial, and DNA lesion-appropriate fashion to optimize repair and prevent unnecessary and potentially deleterious alterations in the structure of DNA during normal cellular processes. This review will focus on how the DDR controls DNA repair and the phenotypic consequences of defects in these critical regulatory functions in mammals. - MicroRNA Functions in Stress Responses
- mol cell 40(2):205-215 (2010)
MicroRNAs (miRNAs) are a class of 22 nucleotide short noncoding RNAs that play key roles in fundamental cellular processes, including how cells respond to changes in environment or, broadly defined, stresses. Responding to stresses, cells either choose to restore or reprogram their gene expression patterns. This decision is partly mediated by miRNA functions, in particular by modulating the amount of miRNAs, the amount of mRNA targets, or the activity/mode of action of miRNA-protein complexes. In turn, these changes determine the specificity, timing, and concentration of gene products expressed upon stresses. Dysregulation of these processes contributes to chronic diseases, including cancers. - The Nucleolus under Stress
- mol cell 40(2):216-227 (2010)
Cells typically respond quickly to stress, altering their metabolism to compensate. In mammalian cells, stress signaling usually leads to either cell-cycle arrest or apoptosis, depending on the severity of the insult and the ability of the cell to recover. Stress also often leads to reorganization of nuclear architecture, reflecting the simultaneous inhibition of major nuclear pathways (e.g., replication and transcription) and activation of specific stress responses (e.g., DNA repair). In this review, we focus on how two nuclear organelles, the nucleolus and the Cajal body, respond to stress. The nucleolus senses stress and is a central hub for coordinating the stress response. We review nucleolar function in the stress-induced regulation of p53 and the specific changes in nucleolar morphology and composition that occur upon stress. Crosstalk between nucleoli and CBs is also discussed in the context of stress responses. - Translational Regulation of Gene Expression during Conditions of Cell Stress
- mol cell 40(2):228-237 (2010)
A number of stresses, including nutrient stress, temperature shock, DNA damage, and hypoxia, can lead to changes in gene expression patterns caused by a general shutdown and reprogramming of protein synthesis. Each of these stress conditions results in selective recruitment of ribosomes to mRNAs whose protein products are required for responding to stress. This recruitment is regulated by elements within the 5′ and 3′ untranslated regions of mRNAs, including internal ribosome entry segments, upstream open reading frames, and microRNA target sites. These elements can act singly or in combination and are themselves regulated by trans-acting factors. Translational reprogramming can result in increased life span, and conversely, deregulation of these translation pathways is associated with disease including cancer and diabetes. - Protein Quality Control in the Cytosol and the Endoplasmic Reticulum: Brothers in Arms
- mol cell 40(2):238-252 (2010)
In cells, both newly synthesized and pre-existing proteins are constantly endangered by misfolding and aggregation. The accumulation of damaged proteins can perturb cellular homeostasis and provoke aging, pathological states, and even cell death. To avert these dangers, cells have developed powerful quality control strategies that counteract protein damage in a compartment-specific way. Here, we compare the protein quality control systems of the eukaryotic cytosol and the endoplasmic reticulum, focusing on the principles of damage recognition, the triage decisions between chaperone-mediated refolding and proteolytic elimination of damaged proteins, the repair of misfolded and aggregated protein species, and the mechanisms by which perturbations of protein homeostasis are sensed to induce compartment-specific stress responses. - The Heat Shock Response: Life on the Verge of Death
- mol cell 40(2):253-266 (2010)
Organisms must survive a variety of stressful conditions, including sudden temperature increases that damage important cellular structures and interfere with essential functions. In response to heat stress, cells activate an ancient signaling pathway leading to the transient expression of heat shock or heat stress proteins (Hsps). Hsps exhibit sophisticated protection mechanisms, and the most conserved Hsps are molecular chaperones that prevent the formation of nonspecific protein aggregates and assist proteins in the acquisition of their native structures. In this Review, we summarize the concepts of the protective Hsp network. - Membranes in Balance: Mechanisms of Sphingolipid Homeostasis
- mol cell 40(2):267-279 (2010)
Sphingolipids and their metabolites play key cellular roles both as structural components of membranes and as signaling molecules that mediate responses to physiologic cues and stresses. Despite progress during the last two decades in defining the enzymatic machinery responsible for synthesizing and degrading sphingolipids, comparatively little is known about how these enzymes are regulated to ensure sphingolipid homeostasis. Here, we review new insights into how cells sense and control sphingolipid biosynthesis and transport. We also discuss emerging evidence that sphingolipid metabolism is closely coordinated with that of sterols and glycerolipids and with other processes that occur in the secretory pathway. An improved understanding of sphingolipid homeostasis promises to shed light on basic processes in cell biology and disease, including how cells establish and maintain the complex membrane composition and architecture that is a defining feature of eukaryotic cell! biology. - Autophagy and the Integrated Stress Response
- mol cell 40(2):280-293 (2010)
Autophagy is a tightly regulated pathway involving the lysosomal degradation of cytoplasmic organelles or cytosolic components. This pathway can be stimulated by multiple forms of cellular stress, including nutrient or growth factor deprivation, hypoxia, reactive oxygen species, DNA damage, protein aggregates, damaged organelles, or intracellular pathogens. Both specific, stimulus-dependent and more general, stimulus-independent signaling pathways are activated to coordinate different phases of autophagy. Autophagy can be integrated with other cellular stress responses through parallel stimulation of autophagy and other stress responses by specific stress stimuli, through dual regulation of autophagy and other stress responses by multifunctional stress signaling molecules, and/or through mutual control of autophagy and other stress responses. Thus, autophagy is a cell biological process that is a central component of the integrated stress response. - Hypoxia-Inducible Factors and the Response to Hypoxic Stress
- mol cell 40(2):294-309 (2010)
Oxygen (O2) is an essential nutrient that serves as a key substrate in cellular metabolism and bioenergetics. In a variety of physiological and pathological states, organisms encounter insufficient O2 availability, or hypoxia. In order to cope with this stress, evolutionarily conserved responses are engaged. In mammals, the primary transcriptional response to hypoxic stress is mediated by the hypoxia-inducible factors (HIFs). While canonically regulated by prolyl hydroxylase domain-containing enzymes (PHDs), the HIFα subunits are intricately responsive to numerous other factors, including factor-inhibiting HIF1α (FIH1), sirtuins, and metabolites. These transcription factors function in normal tissue homeostasis and impinge on critical aspects of disease progression and recovery. Insights from basic HIF biology are being translated into pharmaceuticals targeting the HIF pathway. - Regulation of the mTOR Complex 1 Pathway by Nutrients, Growth Factors, and Stress
- mol cell 40(2):310-322 (2010)
The large serine/threonine protein kinase mTOR regulates cellular and organismal homeostasis by coordinating anabolic and catabolic processes with nutrient, energy, and oxygen availability and growth factor signaling. Cells and organisms experience a wide variety of insults that perturb the homeostatic systems governed by mTOR and therefore require appropriate stress responses to allow cells to continue to function. Stress can manifest from an excess or lack of upstream signals or as a result of genetic perturbations in upstream effectors of the pathway. mTOR nucleates two large protein complexes that are important nodes in the pathways that help buffer cells from stresses, and are implicated in the progression of stress-associated phenotypes and diseases, such as aging, tumorigenesis, and diabetes. This review focuses on the key components of the mTOR complex 1 pathway and on how various stresses impinge upon them. - Cellular Metabolic Stress: Considering How Cells Respond to Nutrient Excess
- mol cell 40(2):323-332 (2010)
Nutrient stress is generally considered from the standpoint of how cells detect and respond to an insufficient supply of nutrients to meet their bioenergetic needs. However, cells also experience stress as a result of nutrient excess, during which reactive oxygen species (ROS) production exceeds that required for normal physiological responses. This may occur as a result of oncogene activation or chronic exposure to growth factors combined with high levels of nutrients. As a result, multiple mechanisms have evolved to allow cells to detect and adapt to elevated levels of intracellular metabolites, including promotion of signaling and proliferation by ROS, amino acid-dependent mTOR activation, and regulation of signaling and transcription through metabolite-sensitive protein modifications. We discuss how each of these responses can contribute to the development and/or progression of cancer under conditions of cellular nutrient excess and their potential roles in linking! chronic organismal over-nutrition (obesity) with cancer. - The Aging Stress Response
- mol cell 40(2):333-344 (2010)
Aging is the outcome of a balance between damage and repair. The rate of aging and the appearance of age-related pathology are modulated by stress response and repair pathways that gradually decline, including the proteostasis and DNA damage repair networks and mitochondrial respiratory metabolism. Highly conserved insulin/IGF-1, TOR, and sirtuin signaling pathways in turn control these critical cellular responses. The coordinated action of these signaling pathways maintains cellular and organismal homeostasis in the face of external perturbations, such as changes in nutrient availability, temperature, and oxygen level, as well as internal perturbations, such as protein misfolding and DNA damage. Studies in model organisms suggest that changes in signaling can augment these critical stress response systems, increasing life span and reducing age-related pathology. The systems biology of stress response signaling thus provides a new approach to the understanding and pote! ntial treatment of age-related diseases.
No comments:
Post a Comment