Latest Articles Include:
- Editorial Board and Publication Information
- J Biomech 43(14):IFC (2010)
- Alterations to movement mechanics can greatly reduce anterior cruciate ligament loading without reducing performance
- J Biomech 43(14):2657-2664 (2010)
Anterior cruciate ligament (ACL) injuries are one of the most common and potentially debilitating sports injuries. Approximately 70% of ACL injuries occur without contact and are believed to be preventable. Jump stop movements are associated with many non-contact ACL injuries. It was hypothesized that an athlete performing a jump stop movement can reduce their peak tibial shear force (PTSF), a measure of ACL loading, without compromising performance, by modifying their knee flexion angle, shank angle, and foot contact location during landing. PTSF was calculated for fourteen female basketball players performing jump stops using their normal mechanics and mechanics modified to increase their knee flexion angle, decrease their shank angle relative to vertical and land more on their toes during landing. Every subject tested experienced drastic reductions in their PTSF (average reduction=56.4%) using modified movement mechanics. The athletes maintained or improved their ju! mp height with the modified movement mechanics (an average increase in jump height of 2.5 cm). The hypothesis was supported: modifications to jump stop movement mechanics greatly reduced PTSF and therefore ACL loading without compromising performance. The results from this study identify crucial biomechanical quantities that athletes can easily modify to reduce ACL loading and therefore should be targeted in any physical activity training programs designed to reduce non-contact ACL injuries. - Measurement of human Gracilis muscle isometric forces as a function of knee angle, intraoperatively
- J Biomech 43(14):2665-2671 (2010)
The goals of the present study were (1) to measure the previously unstudied isometric forces of activated human Gracilis (G) muscle as a function of knee joint angle and (2) to test whether length history effects are important also for human muscle. Experiments were conducted intraoperatively during anterior cruciate ligament (ACL) reconstruction surgery (n=8). Mean peak G muscle force, mean peak G tendon stress and mean optimal knee angle equals 178.5±270.3 N, 24.4±20.6 MPa and 67.5±41.7°, respectively. The substantial inter-subject variability found (e.g., peak G force ranges between 17.2 and 490.5 N) indicate that the contribution of the G muscle to knee flexion moment may vary considerably among subjects. Moreover, typical subject anthropometrics did not appear to provide a sound estimate of the peak G force: only a limited insignificant correlation was found between peak G force and subject mass as well as mid-thigh perimeter and no correlation was found betwe! en peak G force and thigh length. The functional joint range of motion for human G muscle was determined to be at least as wide as full knee extension to 120° of knee flexion. However; the portion of the knee angle–muscle force relationship operationalized is not unique but individual specific: our data suggest for most subjects that G muscle operates in both ascending and descending limbs of its length–force characteristics whereas, for the remainder of the subjects, its function is limited to the descending limb, exclusively. Previous activity of G muscle at high muscle length attained during collection of a complete set of knee angle–force data showed for the first time that such length history effects are important also for human muscles: a significant correlation was found between optimal knee angle and absolute value of % force change. Except for two of the subjects, G muscle force measured at low length was lower than that measured during collection of knee jo! int–force data (maximally by 42.3%). - A new sledge jump system that allows almost natural reactive jumps
- J Biomech 43(14):2672-2677 (2010)
Aim Sledge jump systems (SJS) are often employed to examine the underlying mechanical and neuromuscular mechanisms of the stretch-shortening cycle (SSC) as they allow the systematic variation of impact velocity and energy. However, in existing SJS the jumps are not very comparable to natural jumps because of the long contact times (200%), which prevent the storage of kinetic energy. The aim of the present study was to evaluate if an ultra-light sledge, built in a way that joint movement is barely restricted, allows jumps that are comparable to natural jumps. Methods Ground reaction forces, kinematic and electromyographic (EMG) data of 21 healthy subjects were compared between normal hoppings (NH) on the ground and hoppings in a custom-built SJS (sledge hoppings, SH). Results Normalized to NH, the ground contact times for the SH were prolonged (+22%), while the peak forces (−21%) and the preactivity of the soleus and gastrocnemius medialis muscles were reduced (−20% and −22%, respectively). No significant changes were observed for the iEMG of the short latency response of those muscles (+1% and +8%) and the ranges of motion in the ankle, knee and hip joint (differences of 1, 1 and 2 degrees). The reduced peak forces were associated with a reduced leg stiffness (−21%). Conclusion The new system allows reactive jumps that are rather comparable to natural jumps. Therefore, the new SJS seems to be an adequate system in order to examine the SSC under controlled and almost natural conditions. - Real-time assessment of flow reversal in an eccentric arterial stenotic model
- J Biomech 43(14):2678-2683 (2010)
Plaque rupture is the leading cause of acute coronary syndromes and stroke. Plaque formation, otherwise known as stenosis, preferentially occurs in the regions of arterial bifurcation or curvatures. To date, real-time assessment of stenosis-induced flow reversal remains a clinical challenge. By interfacing microelectromechanical system (MEMS) thermal sensors with the high frequency pulsed wave (PW) Doppler ultrasound, we proposed to assess flow reversal in the presence of an eccentric stenosis. We developed a 3-D stenotic model (inner diameter of 6 mm, an eccentric stenosis with a height of 2.75 mm, and width of 21 mm) simulating a superficial arterial vessel. We demonstrated that heat transfer from the sensing element (2×80 μm2) to the flow field peaked as a function of flow rates at the throat of the stenosis along the center/midline of arterial model, and dropped downstream from the stenosis, where flow reversal was detected by the high frequency ultrasound device! at 45 MHz. Computational fluid dynamics (CFD) codes are in agreement with the ultrasound-acquired flow profiles upstream, downstream, and at the throat of the stenosis. Hence, we characterized regions of eccentric stenosis in terms of changes in heat transfer along the midline of vessel and identified points of flow reversal with high spatial and temporal resolution. - Patient specific quantitative analysis of fracture fixation in the proximal femur implementing principal strain ratios. Method and experimental validation
- J Biomech 43(14):2684-2688 (2010)
Computational patient-specific modeling has the potential to yield powerful information for selection and planning of fracture treatments if it can be developed to yield results that are rapid, focused and coherent from a clinical perspective. In this study we introduce the utilization of a principal strain fixation ratio measure (SR) defined as the ratio of principal strains that develop in a fixated bone relative to the principal strains that develop in the same bone in an intact state. The SR field output variable is theoretically independent of load amplitude and also has a direct clinical interpretation with SR<1−a representing stress shielding and SR>1+b representing overstressed bone. A combined experimental and numerical study was performed with cadaveric proximal femora (n=6) intact and following fracture fixation to quantify the performance of the SR variable in terms of accuracy and sensitivity to uncertainties in density–elasticity relationships and loa! d amplitude as model input variables. For a given axial compressive force the SR field output variable was found to be less sensitive to changes in density–elasticity relationships and the response function to be more accurate than strain values themselves; errors were reduced by 44% on comparing SR with strain in the fixated model. In addition, the experimental data confirmed the assumption that the SR values behave independent of load amplitude. The load independent behavior of SR and its direct clinical interpretation may ultimately provide an appropriate and easily understood comparative computational measure to choose between patient specific fracture fixation alternatives. - In vivo tibial stiffness is maintained by whole bone morphology and cross-sectional geometry in growing female mice
- J Biomech 43(14):2689-2694 (2010)
Whole bone morphology, cortical geometry, and tissue material properties modulate skeletal stresses and strains that in turn influence skeletal physiology and remodeling. Understanding how bone stiffness, the relationship between applied load and tissue strain, is regulated by developmental changes in bone structure and tissue material properties is important in implementing biophysical strategies for promoting healthy bone growth and preventing bone loss. The goal of this study was to relate developmental patterns of in vivo whole bone stiffness to whole bone morphology, cross-sectional geometry, and tissue properties using a mouse axial loading model. We measured in vivo tibial stiffness in three age groups (6, 10, 16 wk old) of female C57Bl/6 mice during cyclic tibial compression. Tibial stiffness was then related to cortical geometry, longitudinal bone curvature, and tissue mineral density using microcomputed tomography (microCT). Tibial stiffness and the stresses ! induced by axial compression were generally maintained from 6 to 16 wks of age. Growth-related increases in cortical cross-sectional geometry and longitudinal bone curvature had counteracting effects on induced bone stresses and, therefore, maintained tibial stiffness similarly with growth. Tissue mineral density increased slightly from 6 to 16 wks of age, and although the effects of this increase on tibial stiffness were not directly measured, its role in the modulation of whole bone stiffness was likely minor over the age range examined. Thus, whole bone morphology, as characterized by longitudinal curvature, along with cortical geometry, plays an important role in modulating bone stiffness during development and should be considered when evaluating and designing in vivo loading studies and biophysical skeletal therapies. - Are fixed limb inertial models valid for dynamic simulations of human movement?
- J Biomech 43(14):2695-2701 (2010)
During human movement, muscle activation and limb movement result in subtle changes in muscle mass distribution. Muscle mass redistribution can affect limb inertial properties and limb dynamics, but it is not currently known to what extent. The objectives of this study were to investigate: (1) how physiological alterations of muscle and tendon length affect limb inertial characteristics, and (2) how such changes affect dynamic simulations of human movement. To achieve these objectives, a digital model of a human leg, custom software, and Software for interactive musculoskeletal modeling were used to simulate mass redistribution of muscle–tendon structures within a limb segment during muscle activation and joint movement. Thigh and shank center of mass and moments of inertia for different muscle activation and joint configurations were determined and compared. Limb inertial parameters representing relaxed muscles and fully active muscles were input into a simulated st! raight-leg movement to evaluate the effect inertial parameter variations could have on movement simulation results. Muscle activation and limb movement altered limb segment center of mass and moments of inertia by less than 0.04 cm and 1.2%, respectively. These variations in limb inertial properties resulted in less than 0.01% change in maximum angular velocity for a simulated straight-leg hip flexion task. These data demonstrate that, for the digital human leg model considered, assuming static quantities for segment center of masses and moments of inertia in movement simulations appear reasonable and induce minimal errors in simulated movement dynamics. - The mechanics of atherosclerotic plaque rupture by inclusion/matrix interfacial decohesion
- J Biomech 43(14):2702-2708 (2010)
Histological investigation along with finite element analysis of arterial wall/atherosclerotic plaque geometries indicates the paradoxical result that ruptures often occur at sites with predicted stresses of half the plaque cap strength. Recent experiments have revealed calcified cells within the cap suggesting that these inclusions, situated close to the cap/luminal blood surface, precipitate rupture at low nominal loads by concentrating stress. In this paper, we investigate the proposition that rupture at low nominal loads occurs by (possibly brittle) decohesion of the calcification/cap interface followed by tearing of cap tissue. A novel boundary value problem is analyzed consisting of a remotely loaded linear elastic layer (extracellular matrix cap) containing a rigid spherical inclusion (calcified cell) that interacts with it through a nonlinear structural interface which models the binding of the calcified cell to the extracellular matrix via integrin receptor pr! oteins. Equilibrium solutions are obtained from equations derived from the Boussinesq potentials for spherical domains. Results indicate a brittle character to the rupture process with the size of the domains between the inclusion center and the matrix surfaces determining the concentration of stress. For an inclusion close to a surface the abrupt unloading of the interface during brittle decohesion produces a sharp spike in circumferential stress. We conjecture that when this dynamic stress exceeds the cap strength, tearing occurs followed by thrombus formation and possibly infarction. - Muscle contributions to propulsion and support during running
- J Biomech 43(14):2709-2716 (2010)
Muscles actuate running by developing forces that propel the body forward while supporting the body's weight. To understand how muscles contribute to propulsion (i.e., forward acceleration of the mass center) and support (i.e., upward acceleration of the mass center) during running we developed a three-dimensional muscle-actuated simulation of the running gait cycle. The simulation is driven by 92 musculotendon actuators of the lower extremities and torso and includes the dynamics of arm motion. We analyzed the simulation to determine how each muscle contributed to the acceleration of the body mass center. During the early part of the stance phase, the quadriceps muscle group was the largest contributor to braking (i.e., backward acceleration of the mass center) and support. During the second half of the stance phase, the soleus and gastrocnemius muscles were the greatest contributors to propulsion and support. The arms did not contribute substantially to either prop! ulsion or support, generating less than 1% of the peak mass center acceleration. However, the arms effectively counterbalanced the vertical angular momentum of the lower extremities. Our analysis reveals that the quadriceps and plantarflexors are the major contributors to acceleration of the body mass center during running. - Perivascular tethering modulates the geometry and biomechanics of cerebral arterioles
- J Biomech 43(14):2717-2721 (2010)
Recent studies have renewed interest in the effects of perivascular tethering on vascular mechanics, particularly growth and remodeling. We quantified effects of axial and circumferential tethering on rabbit pial arterioles from the ventral occipital lobe of the brain. The homeostatic axial pre-stretch, which is influenced by perivascular tethering, was measured in situ to be 1.24±0.04. Using a cannulated microvessel preparation, wall mechanics were then quantified in vitro for isolated arterioles at low (1.10) or normal (1.24) values of axial stretch and for tethered arterioles having perivascular support. Axial stretch did not significantly affect changes in circumferential stretch or stress upon pressurization, but circumferential tethering caused arteriolar geometry to change from a circular cross-section at normal pressure to an elliptical one at pressures above and below normal. Calculations suggested that the observed levels of ellipticity could cause a modest ! decrease in volumetric blood flow, but also a pronounced variation in shear stress around the circumference of the arteriole. An elliptical cross-section could thus increase vascular resistance or promote luminal remodeling at pressures different from normal. This characterization of effects of perivascular tethering on pial arterioles should prove useful in future studies of roles of perturbed cerebral blood flow on the propensity of the cerebral microcirculation to remodel. - A subject-specific pelvic bone model and its application to cemented acetabular replacements
- J Biomech 43(14):2722-2727 (2010)
A subject-specific three-dimensional finite element (FE) pelvic bone model has been developed and applied to the study of bone–cement interfacial response in cemented acetabular replacements. The pelvic bone model was developed from CT scan images of a cadaveric pelvis and validated against the experiment data obtained from the same specimen at a simulated single-legged stance. The model was then implanted with a cemented acetabular cup at selected positions to simulate some typical implant conditions due to the misplacement of the cup as well as a standard cup condition. For comparison purposes, a simplified FE model with homogeneous trabecular bone material properties was also generated and similar implant conditions were examined. The results from the homogeneous model are found to underestimate significantly both the peak von Mises stress and the area of the highly stressed region in the cement near the bone–cement interface, compared with those from the subject-specific model. Non-uniform cement thickness and non-standard cup orientation seem to elevate the highly stressed region as well as the peak stress near the bone–cement interface. - Effects of mechanical loading patterns, bone graft, and proximity to periosteum on bone defect healing
- J Biomech 43(14):2728-2737 (2010)
The goal of this study is to elucidate whether mechanobiological factors, including mechanical loading patterns, presence of bone graft, and proximity to the periosteum, correlate to de novo tissue generation and healing in critical sized long bone defects, which are enveloped by periosteum in situ and are bridged at 16 weeks, in sheep femora. Quantitative histomorphometric measures of defect cross sections show that, along the axis least able to resist bending loads (minor centroidal axis, CA), bone laid down in the first two weeks after surgery exhibits more mineralization albeit less total area compared to bone along the axis most able to resist bending loads (major CA). Similarly, areas of the cross section along the minor CA show a higher degree of perfusion albeit less total area of perfusion compared to bone along the major CA. Furthermore, proximity to the periosteal niche, in conjunction with the presence of bone graft and predominant loading patterns, relates! significantly to the radial distribution of early bone apposition and perfusion of bone at 16 weeks after surgery (linear regression with R2>0.80). In the absence of graft, early bone density is relatively evenly distributed in the defect zone, as is the intensity of perfused tissue. As measured by a steeper average slope in intensity of fluorochrome (new bone) distribution between the periosteum and the IM nail, the presence of bone graft retards initial bone formation in the defect zone and is associated with less evenly distributed tissue perfusion (steeper slope) persisting 16 weeks after surgery. Finally, although the mean area of bone resorption is not significantly different within or between groups defined by the presence of graft and/or mechanical loading patterns in the defect zone, the mean area of infilling resorption spaces is significantly higher in areas of the defect zone least able to resist bending (minor CA) but is not significantly related to the presen! ce of bone graft. To our knowledge, the use of the major and m! inor centroidal axes to relate prevailing mechanical loading patterns to area and density of early bone generation in bone defects has not been reported prior to this study and may provide a new means to assess structure–function relationships in de novo bone generation and healing of bone defects. - Local irradiation alters bone morphology and increases bone fragility in a mouse model
- J Biomech 43(14):2738-2746 (2010)
Insufficiency fracture following radiation therapy (RTx) is a challenging clinical problem and typical bone mass measures fail to predict these fractures. The goals of this research were to develop a mouse model that results in reduced bone strength following focal irradiation, quantify morphological and strength changes occurring over time, and determine if a positive correlation between bone morphology and strength is retained after irradiation. Right hind limbs of 13 week-old female Balb/c mice were irradiated (5 or 20 Gy) using a therapeutic X-ray unit. Left limbs served as control. Animals were euthanized at 2, 6, 12, or 26 weeks. Axial compression tests of the distal femur were used to quantify whole bone strength. Specimen-specific, non-linear finite element (FE) analyses of the mechanical tests were performed using voxel-based meshes with two different material failure models: a linear bone density–strength relationship and a non-linear 'embrittled' relat! ionship. Radiation resulted in a dose dependent increase in cortical bone density and marked loss of trabecular bone, measured using micro-CT. An early (2 week) increase in bone volume was associated with an increase in bone strength following irradiation; at 12 weeks there was a loss of bone strength despite higher bone volume for irradiated limbs. There was a positive correlation between bone volume bone and strength in control (r2=0.63) but not irradiated femora (r2=0.08). FE analysis with a constant strain failure model resulted in improved prediction of bone strength for irradiated limbs (r2=0.34) and this was improved further with the embrittled material model (r2=0.46). In summary, focal irradiation leads to substantial changes in bone morphology and strength with time, where there is a decreased bone strength following irradiation in the face of increasing bone mass; FE models with a non-linear embrittled material model were most successful in simulating these exper! imental findings. - Time-harmonic magnetic resonance elastography of the normal feline brain
- J Biomech 43(14):2747-2752 (2010)
Imaging of the mechanical properties of in vivo brain tissue could eventually lead to non-invasive diagnosis of hydrocephalus, Alzheimer's disease and other pathologies known to alter the intracranial environment. The purpose of this work is to (1) use time-harmonic magnetic resonance elastography (MRE) to estimate the mechanical property distribution of cerebral tissue in the normal feline brain and (2) compare the recovered properties of grey and white matter. Various in vivo and ex vivo brain tissue property measurement strategies have led to the highly variable results that have been reported in the literature. MR elastography is an imaging technique that can estimate mechanical properties of tissue non-invasively and in vivo. Data was acquired in 14 felines and elastic parameters were estimated using a globo-regional nonlinear image reconstruction algorithm. Results fell within the range of values reported in the literature and showed a mean shear modulus across t! he subject group of 7–8 kPa with all but one animal falling within 5–15 kPa. White matter was statistically stiffer (p<0.01) than grey matter by about 1 kPa on a per subject basis. To the best of our knowledge, the results reported represent the most extensive set of estimates in the in vivo brain which have been based on MRE acquisition of the three-dimensional displacement field coupled to volumetric shear modulus image reconstruction achieved through nonlinear parameter estimation. However, the inter-subject variation in mean shear modulus indicates the need for further study, including the possibility of applying more advanced models to estimate the relevant tissue mechanical properties from the data. - Strain-energy function and three-dimensional stress distribution in esophageal biomechanics
- J Biomech 43(14):2753-2764 (2010)
Knowledge of the transmural stress and stretch fields in esophageal wall is necessary to quantify growth and remodeling, and the response to mechanically based clinical interventions or traumatic injury, but there are currently conflicting reports on this issue and the mechanical properties of intact esophagus have not been rigorously addressed. This paper offers multiaxial data on rabbit esophagus, warranted for proper identification of the 3D mechanical properties. The Fung-type strain-energy function was adopted to model our data for esophagus, taken as a thick-walled (1 or 2-layer) tubular structure subjected to inflation and longitudinal extension. Accurate predictions of the pressure–radius–force data were obtained using the 1-layer model, covering a broad range of extensions; the calculated material parameters indicated that intact wall was equally stiff as mucosa–submucosa, but stiffer than muscle in both principal axes, and tissue was stiffer longitudina! lly, concurring our histological findings (Stavropoulou et al., Journal of Biomechanics. 42 (2009) 2654–2663). Employing the material parameters of individual layers, with reference to their zero-stress state, a reasonable fit was obtained to the data for intact wall, modeled as a 2-layer tissue. Different from the stress distributions presented hitherto in the esophagus literature, consideration of residual stresses led to less dramatic homogenization of stresses under loading. Comparison of the 1- and 2-layer models of esophagus demonstrated that heterogeneity induced a more uniform distribution of residual stresses in each layer, a discontinuity in circumferential and longitudinal stresses at the interface among layers, and a considerable rise of stresses in mucosa, with a reduction in muscle. - Characterizing gait induced normal strains in a murine tibia cortical bone defect model
- J Biomech 43(14):2765-2770 (2010)
The critical role that mechanical stimuli serve in mediating bone repair is recognized but incompletely understood. Further, previous attempts to understand this role have utilized application of externally applied mechanical loads to study the tissue's response. In this project, we have therefore endeavored to capitalize on bone's own consistently diverse loading environment to develop a novel model that would enable assessment of the influence of physiologically engendered mechanical stimuli on cortical defect repair. We used an inverse dynamics approach with finite element analysis (FEA) to first quantify normal strain distributions generated in mouse tibia during locomotion. The strain environment of the tibia, as previously reported for other long bones, was found to arise primarily due to bending and was consistent in orientation through the stance phase of gait. Based on these data, we identified three regions within a transverse cross-section of the mid-dia! physis as uniform locations of either peak tension, peak compression, or the neutral axis of bending (i.e. minimal strain magnitude). We then used FEA to quantify the altered strain environment that would be produced by a 0.6 mm diameter cylindrical cortical bone defect at each diaphyseal site and, in an in situ study confirmed our ability to accurately place defects at the desired diaphyseal locations. The resulting model will enable the exploration of cortical bone healing within the context of physiologically engendered mechanical strain. - The influence of altering push force effectiveness on upper extremity demand during wheelchair propulsion
- J Biomech 43(14):2771-2779 (2010)
Manual wheelchair propulsion has been linked to a high incidence of overuse injury and pain in the upper extremity, which may be caused by the high load requirements and low mechanical efficiency of the task. Previous studies have suggested that poor mechanical efficiency may be due to a low effective handrim force (i.e. applied force that is not directed tangential to the handrim). As a result, studies attempting to reduce upper extremity demand have used various measures of force effectiveness (e.g., fraction effective force, FEF) as a guide for modifying propulsion technique, developing rehabilitation programs and configuring wheelchairs. However, the relationship between FEF and upper extremity demand is not well understood. The purpose of this study was to use forward dynamics simulations of wheelchair propulsion to determine the influence of FEF on upper extremity demand by quantifying individual muscle stress, work and handrim force contributions at different va! lues of FEF. Simulations maximizing and minimizing FEF resulted in higher average muscle stresses (23% and 112%) and total muscle work (28% and 71%) compared to a nominal FEF simulation. The maximal FEF simulation also shifted muscle use from muscles crossing the elbow to those at the shoulder (e.g., rotator cuff muscles), placing greater demand on shoulder muscles during propulsion. The optimal FEF value appears to represent a balance between increasing push force effectiveness to increase mechanical efficiency and minimize upper extremity demand. Thus, care should be taken in using force effectiveness as a metric to reduce upper extremity demand. - Individual muscle contributions to the axial knee joint contact force during normal walking
- J Biomech 43(14):2780-2784 (2010)
Muscles are significant contributors to the high joint forces developed in the knee during human walking. Not only do muscles contribute to the knee joint forces by acting to compress the joint, but they also develop joint forces indirectly through their contributions to the ground reaction forces via dynamic coupling. Thus, muscles can have significant contributions to forces at joints they do not span. However, few studies have investigated how the major lower-limb muscles contribute to the knee joint contact forces during walking. The goal of this study was to use a muscle-actuated forward dynamics simulation of walking to identify how individual muscles contribute to the axial tibio-femoral joint force. The simulation results showed that the vastii muscles are the primary contributors to the axial joint force in early stance while the gastrocnemius is the primary contributor in late stance. The tibio-femoral joint force generated by these muscles was at times great! er than the muscle forces themselves. Muscles that do not cross the knee joint (e.g., the gluteus maximus and soleus) also have significant contributions to the tibio-femoral joint force through their contributions to the ground reaction forces. Further, small changes in walking kinematics (e.g., knee flexion angle) can have a significant effect on the magnitude of the knee joint forces. Thus, altering walking mechanics and muscle coordination patterns to utilize muscle groups that perform the same biomechanical function, yet contribute less to the knee joint forces may be an effective way to reduce knee joint loading during walking. - A mechanistic study for strain rate sensitivity of rabbit patellar tendon
- J Biomech 43(14):2785-2791 (2010)
The ultrastructural mechanism for strain rate sensitivity of collagenous tissue has not been well studied at the collagen fibril level. Our objective is to reveal the mechanistic contribution of tendon's key structural component to strain rate sensitivity. We have investigated the structure of the collagen fibril undergoing tension at different strain rates. Tendon fascicles were pulled and fixed within the linear region (12% local tissue strain) at multiple strain rates. Although samples were pulled to the same percent elongation, the fibrils were noticed to elongate differently, increasing with strain rate. For the 0.1, 10, and 70%/s strain rates, there were 1.84±3.6%, 5.5±1.9%, and 7.03±2.2% elongations (mean±S.D.), respectively. We concluded that the collagen fibrils underwent significantly greater recruitment (fibril strain relative to global tissue strain) at higher strain rates. A better understanding of tendon mechanisms at lower hierarchical levels would! help establish a basis for future development of constitutive models and assist in tissue replacement design. - A three-dimensional mathematical model of the thoracolumbar fascia and an estimate of its biomechanical effect
- J Biomech 43(14):2792-2797 (2010)
The thoracolumbar fascia (TLF) provides a means of attachment to the lumbar spine for several muscles including the transverse abdominis, and parts of the latissimus dorsi and internal oblique muscles. Previous biomechanical models of the lumbar spine either tend to omit the TLF on the assumption that its contribution would be negligible or incorporate only part of the TLF. Here, a three-dimensional model of the posterior and middle layers of the TLF is presented to enable its action to be included in future three-dimensional models of the spine. It is used illustratively to estimate the biomechanical influence of this structure on the lumbar spine. The formulation of the model allows the lines of action of the fibres comprising the fascia to be calculated for any posture whilst ensuring that anatomical constraints are satisfied. Application of the model suggests that the TLF produces moments primarily in flexion and extension. The simulated results demonstrate that th! e abdominal muscles, acting via the TLF, are capable of contributing extension moments comparable to those produced by other smaller muscles associated with the lumbar spine. - Local dynamic stability of amputees wearing a torsion adapter compared to a rigid adapter during straight-line and turning gait
- J Biomech 43(14):2798-2803 (2010)
Lower limb amputees have decreased balance during daily ambulation compared to nonamputees. An optimally compliant torsion adapter, which enables transverse plane rotation at the socket–pylon junction may reduce limb asymmetries and improve comfort leading to increased confidence and stability during gait. The purpose of this study was to determine if the presence of a torsion adapter affects amputee sensitivity to local perturbations (local dynamic stability) during straight-line walking and during a turning task. Ten unilateral transtibial amputees were fit with a torsion and rigid adapter in random order and blinded to the condition. After a 3-week acclimation period, kinematic data were collected while subjects walked in a straight-line on a treadmill and around a 1-m radius circular path at constant speed. Maximum finite-time Lyapunov exponents (λ), an estimator of local dynamic stability, were calculated for the amputee's sagittal plane hip, knee and ankle a! ngles for each condition. The prosthetic limb λ was greater during a turn compared to straight-line walking, suggesting amputees are less stable while turning. There were no statistically significant differences found in λ between adapters during both walking conditions, suggesting the torsion adapter had no effect on amputee stability; however, high inter-subject variability due to the examined population and turning task may have masked a small decrease in prosthetic limb hip and knee stability for the torsion adapter during straight-line gait. Therefore, the torsion adapter's added degree of freedom may have a small adverse effect on prosthetic limb stability during straight-line walking and no effect on turning. - Comparison between in vivo and theoretical bite performance: Using multi-body modelling to predict muscle and bite forces in a reptile skull
- J Biomech 43(14):2804-2809 (2010)
In biomechanical investigations, geometrically accurate computer models of anatomical structures can be created readily using computed-tomography scan images. However, representation of soft tissue structures is more challenging, relying on approximations to predict the muscle loading conditions that are essential in detailed functional analyses. Here, using a sophisticated multi-body computer model of a reptile skull (the rhynchocephalian Sphenodon), we assess the accuracy of muscle force predictions by comparing predicted bite forces against in vivo data. The model predicts a bite force almost three times lower than that measured experimentally. Peak muscle force estimates are highly sensitive to fibre length, muscle stress, and pennation where the angle is large, and variation in these parameters can generate substantial differences in predicted bite forces. A review of theoretical bite predictions amongst lizards reveals that bite forces are consistently underestim! ated, possibly because of high levels of muscle pennation in these animals. To generate realistic bites during theoretical analyses in Sphenodon, lizards, and related groups we suggest that standard muscle force calculations should be multiplied by a factor of up to three. We show that bite forces increase and joint forces decrease as the bite point shifts posteriorly within the jaw, with the most posterior bite location generating a bite force almost double that of the most anterior bite. Unilateral and bilateral bites produced similar total bite forces; however, the pressure exerted by the teeth is double during unilateral biting as the tooth contact area is reduced by half. - Concurrent musculoskeletal dynamics and finite element analysis predicts altered gait patterns to reduce foot tissue loading
- J Biomech 43(14):2810-2815 (2010)
Current computational methods for simulating locomotion have primarily used muscle-driven multibody dynamics, in which neuromuscular control is optimized. Such simulations generally represent joints and soft tissue as simple kinematic or elastic elements for computational efficiency. These assumptions limit application in studies such as ligament injury or osteoarthritis, where local tissue loading must be predicted. Conversely, tissue can be simulated using the finite element method with assumed or measured boundary conditions, but this does not represent the effects of whole body dynamics and neuromuscular control. Coupling the two domains would overcome these limitations and allow prediction of movement strategies guided by tissue stresses. Here we demonstrate this concept in a gait simulation where a musculoskeletal model is coupled to a finite element representation of the foot. Predictive simulations incorporated peak plantar tissue deformation into the objective! of the movement optimization, as well as terms to track normative gait data and minimize fatigue. Two optimizations were performed, first without the strain minimization term and second with the term. Convergence to realistic gait patterns was achieved with the second optimization realizing a 44% reduction in peak tissue strain energy density. The study demonstrated that it is possible to alter computationally predicted neuromuscular control to minimize tissue strain while including desired kinematic and muscular behavior. Future work should include experimental validation before application of the methodology to patient care. - Individual-specific muscle maximum force estimation using ultrasound for ankle joint torque prediction using an EMG-driven Hill-type model
- J Biomech 43(14):2816-2821 (2010)
EMG-driven models can be used to estimate muscle force in biomechanical systems. Collected and processed EMG readings are used as the input of a dynamic system, which is integrated numerically. This approach requires the definition of a reasonably large set of parameters. Some of these vary widely among subjects, and slight inaccuracies in such parameters can lead to large model output errors. One of these parameters is the maximum voluntary contraction force (Fom). This paper proposes an approach to find Fom by estimating muscle physiological cross-sectional area (PCSA) using ultrasound (US), which is multiplied by a realistic value of maximum muscle specific tension. Ultrasound is used to measure muscle thickness, which allows for the determination of muscle volume through regression equations. Soleus, gastrocnemius medialis and gastrocnemius lateralis PCSAs are estimated using published volume proportions among leg muscles, which also requires measurements of muscle! fiber length and pennation angle by US. Fom obtained by this approach and from data widely cited in the literature was used to comparatively test a Hill-type EMG-driven model of the ankle joint. The model uses 3 EMGs (Soleus, gastrocnemius medialis and gastrocnemius lateralis) as inputs with joint torque as the output. The EMG signals were obtained in a series of experiments carried out with 8 adult male subjects, who performed an isometric contraction protocol consisting of 10 s step contractions at 20% and 60% of the maximum voluntary contraction level. Isometric torque was simultaneously collected using a dynamometer. A statistically significant reduction in the root mean square error was observed when US-obtained Fom was used, as compared to Fom from the literature. - Minimizing errors associated with calculating the location of the helical axis for spinal motions
- J Biomech 43(14):2822-2829 (2010)
One of the more common comparative tools used to quantify the motion of the vertebral joint is the orientation and position of the (finite) helical axis of motion as well as the amount of translation along, and rotation about, this axis. A survey of recent studies that utilize the helical axis of motion to compare motion before and after total disc replacement reveals a lack of concern for the relative errors associated with this metric. Indeed, intrinsic algorithmic and experimental errors that arise when interpreting motion tracking data can easily lead to a misinterpretation of the changes caused by replacement disc devices. While previous studies examining these errors exist, most have overlooked the errors associated with the determination of the location of the helical axis and its intersection with a chosen plane. The purpose of the study presented in this paper was to evaluate the sensitivity and reliability of the helical axis of motion as a comparative tool f! or kinematically evaluating spinal prostheses devices. To this end, we simulated a typical spine biomechanics testing experiment to investigate the accuracy of calculating the helical axis and its associated parameters using several popular algorithms. The resultant data motivated the development of a new algorithm that is a hybrid of two existing algorithms. The improved accuracy of this hybrid method made it possible to quantify some of the changes to the kinematics of a spinal unit that are induced by distinct placements of a total disc replacement. - The role of interfragmentary strain on the rate of bone healing—A new interpretation and mathematical model
- J Biomech 43(14):2830-2834 (2010)
It is postulated that there is a causal relationship between mechanical stimulus and the rate of bone healing post fracture. However, despite numerous experimental studies in the literature, no quantifiable relationship has been proposed. It is hypothesized in the present study that the temporal rate of bone fracture healing, measured in terms of callus stiffening per week, can be described mathematically based on the relative motions between bone fragments at the initial stage of the healing process. To test this, a comparative reanalysis of experimental data found in the literature was conducted. These individual data sets described a relationship between an initial intermittently applied peak interfragmentary strain and the change in interfragmentary motion or the increase in callus stiffness over time. The data were converted into a relative increase in stiffness, which normalised the results and reduced inter-study variability. The rates of healing for the various! initial strains were compared, and based on this a mathematical phenomenological model was derived. Error analyses were then performed, which showed a high level of congruence between the in-vivo and simulated rates of healing. The results of the comparative analysis revealed that there is a positive correlation between the rate of callus stiffening and interfragmentary strain. Finally, the proposed model has shown for the first time that a quantifiable cause–and–effect relationship exists between the rate of bone healing and mechanical stimulus. - The relationship between gap formation and grip-to-grip displacement during cyclic testing of repaired flexor tendons
- J Biomech 43(14):2835-2838 (2010)
The assessment of repair site gap formation during cyclic loading of reconstructed flexor tendons provides important data on the performance of repair techniques in the early postoperative period. This study describes our cyclic testing protocol and evaluates the relationship between changes in optical gap and grip-to-grip displacement. Sixteen sheep hind limb deep flexor tendons were randomized into four repair groups (n=4 per group): a 2-strand repair (modified Kessler) and 4-strand repair (Adelaide), both with and without a simple running peripheral suture. Repaired tendons were cycled for 1000 cycles at appropriate rehabilitation loads for the reconstruction. Tendons were paused at 18 pre-determined cycle points to measure gap and displacement. A strong positively linear relationship between gap and displacement was demonstrated for all repair groups (R2>0.90). An initial non-linear region during the first 10 cycles was noted with some combined core and peripheral ! repairs. Although trends in displacement after 10 cycles can be used to reflect gapping behaviour, direct optical measurement of gap remains preferable. We hypothesized that the adjustment of suture strands and equilibration of forces within the reconstruction occurs mostly during the initial 10 cycles. Gap–cycle curves provide a good illustration of dynamic changes at the repair site, and should be added more frequently to cyclic testing studies. - A transversely isotropic constitutive model of excised guinea pig spinal cord white matter
- J Biomech 43(14):2839-2843 (2010)
Narrowing of the spinal canal generates an amalgamation of stresses within the spinal cord parenchyma. The tissue's stress state cannot be quantified experimentally; it must be described using computational methods, such as finite element analysis. The objective of this research was to propose a compressible, transversely isotropic constitutive model, an augmentation of the isotropic Mooney–Rivlin hyperelastic strain energy function, to describe the guinea pig spinal cord white matter. Model parameters were derived from a combination of inverse finite element analysis on transverse compression experiments and least squared error analysis applied to quasi-static longitudinal tensile tests. A comparison of the residual errors between the predicted response and the experimental measurements indicated that the transversely isotropic constitutive law that incorporates an offset stretch reduced the error by a factor of four when compared to other commonly used models. - Influence of muscle anatomical cross-sectional area on the moment arm length of the triceps brachii muscle at the elbow joint
- J Biomech 43(14):2844-2847 (2010)
The purpose of this study was to test the hypothesis that the musculotendon moment arm length is affected by the muscle anatomical cross-sectional area. The moment arm length of the triceps brachii (TB) muscle at 30°, 50°, 70°, 90°, 110° elbow flexion positions was measured in sagittal magnetic resonance images (MRI) of 18 subjects as the perpendicular distance between the center of the pulley of the humerus to the line through the center of the TB tendon. The moment arm increased as the elbow flexion angle decreased, from 1.74±0.13 cm at 110° to 2.39±0.14 cm at 30°. The maximal anatomical cross-sectional area of the TB muscle was significantly correlated with the moment arms at all joint positions (r=0.545–0.803, p<0.05). Furthermore, the circumference of the upper arm was also significantly correlated with the moment arms at all joint positions, except for 70° (r=0.504–0.702, p<0.05). These results indicate that the moment arm length of the TB muscle is! affected by the muscle anatomical cross-sectional area. - Determination of joint moments with instrumented force shoes in a variety of tasks
- J Biomech 43(14):2848-2854 (2010)
Ground reaction forces (GRFs) are often used in inverse dynamics analyses to determine joint loading. These GRFs are usually measured using force plates (FPs). As an alternative, instrumented force shoes (FSs) can be used, which have the advantage over FPs that they do not constrain foot placement. This study tested the FS system in one normal weight subject (77 kg) performing 19 different lifting, pushing and pulling and walking tasks. Kinematics were measured with an optoelectronic system and the GRFs and the positions of the centre of pressure (CoP) were synchronously measured with FPs and FSs. Differences between the outcomes of the two measurement systems (i.e. CoP and GRFs) and the resulting ankle and L5/S1 joint moments were determined at the instant of the peak GRF (DaPF). For most lifting and pushing and pulling tasks, the difference between the FP and FS measurements remained small: GRF DaPF remained below 3% body weight, CoP DaPF remained below 10 mm, ankle ! moment DaPF remained below 7% of the peak total ankle moment that occurred during normal walking and L5/S1 moment DaPF remained below 7% of the peak total L5/S1 moment that occurred during normal symmetric lifting. More substantial differences were only found in the maximal pushing tasks. For the walking tasks, peak vertical GRFs were somewhat underestimated. However, differences in ankle and L5/S1 moments remained small, i.e. DaPF below 7% of the peak total moment that occurred during normal walking. - A wax barrier to simulate bone resorption for pre-clinical laboratory models of cemented total hip replacements
- J Biomech 43(14):2855-2857 (2010)
Pre-clinical tests are often performed to screen new implant designs, surgical techniques, and cement formulations. In this work, we developed a technique to simulate the cement–bone morphology found with postmortem retrieved cemented hip replacements. With this technique, a soy wax barrier is created along the endosteal surface of the bone, prior to cementing of the femoral component. This approach was applied to six fresh frozen human cadaver femora and the resulting cement–bone morphology and micromotion following application of torsional loads were measured on a transverse section of each bone. The contact fraction between cement and bone for the wax barrier specimens (6.4±5.7%, range: 0.5–15%) was similar to that found in postmortem retrievals (10.5±10.3%, range: 0.4–32.5%). Micro-motions at the cement–bone interface for the wax barrier specimens (0.5±1.06 mm, range: 0.005–2.66) were similar, but on average larger than those found with postmortem re! trievals (0.092±0.22 mm, range: 0.002–0.73). The use of a wax barrier coating technique could improve experimental pre-clinical tests because it produces a cement–bone interface similar to those of functioning cemented components obtained following in vivo service. - Influence of joint constraints on lower limb kinematics estimation from skin markers using global optimization
- J Biomech 43(14):2858-2862 (2010)
In order to obtain the lower limb kinematics from skin-based markers, the soft tissue artefact (STA) has to be compensated. Global optimization (GO) methods rely on a predefined kinematic model and attempt to limit STA by minimizing the differences between model predicted and skin-based marker positions. Thus, the reliability of GO methods depends directly on the chosen model, whose influence is not well known yet. This study develops a GO method that allows to easily implement different sets of joint constraints in order to assess their influence on the lower limb kinematics during gait. The segment definition was based on generalized coordinates giving only linear or quadratic joint constraints. Seven sets of joint constraints were assessed, corresponding to different kinematic models at the ankle, knee and hip: SSS, USS, PSS, SHS, SPS, UHS and PPS (where S, U and H stand for spherical, universal and hinge joints and P for parallel mechanism). GO was applied to gait data from five healthy males. Results showed that the lower limb kinematics, except hip kinematics, knee and ankle flexion–extension, significantly depend on the chosen ankle and knee constraints. The knee parallel mechanism generated some typical knee rotation patterns previously observed in lower limb kinematic studies. Furthermore, only the parallel mechanisms produced joint displacements. Thus, GO using parallel mechanism seems promising. It also offers some perspectives of subject-specific joint constraints. - Comment on "A biomechanical model of artery buckling" (volume 40, issue 16, 2007) and subsequent comments (volume 43, issue 4, 2010)
- J Biomech 43(14):2863-2864 (2010)
- Response to comment on "A biomechanical model of artery buckling" and subsequent comments
- J Biomech 43(14):2864 (2010)
- Corrigendum to "A strain-hardening bi-power law for the nonlinear behaviour of biological soft tissues" [J. Biomech. 43 (2010) 927–932]
- J Biomech 43(14):2865 (2010)
- Corrigendum to "In situ friction measurement on murine cartilage by atomic force microscopy" [J. Biomech. 41(3) (2008) 541–548]
- J Biomech 43(14):2866 (2010)
- Erratum to "Modelling subcortical bone in finite element analyses: A validation and sensitivity study in the macaque mandible" [J. Biomech. 43 (2010) 1603–1611]
- J Biomech 43(14):2867 (2010)
- In Memoriam: Charles H. Turner
- J Biomech 43(14):2868 (2010)
No comments:
Post a Comment