Latest Articles Include:
- Histone Demethylation and Timely DNA Replication
- mol cell 40(5):683-684 (2010)
It is well-established that silent regions of the genome replicate late during S phase. In this issue of Molecular Cell, Black et al. (2010) uncover a conserved role for the JMJD2 family of histone demethylases in promoting replication within silent chromatin regions that contain histone H3 lysine 9 methylation and HP1. - Hunting for Alternative Disulfide Bond Formation Pathways: Endoplasmic Reticulum Janitor Turns Professor and Teaches a Lesson
- mol cell 40(5):685-686 (2010)
In this issue of Molecular Cell, Ron and colleagues (Zito et al., 2010b) show that an enzyme responsible for cleaning up hydrogen peroxide in the endoplasmic reticulum can contribute productively to disulfide bond formation. - Noxa: A Sweet Twist to Survival and More
- mol cell 40(5):687-688 (2010)
The BCL-2 family member Noxa induces apoptosis by antagonizing the prosurvival protein MCL-1. In this issue of Molecular Cell, Lowman et al. (2010) uncover a glucose-dependent phosphoregulatory mechanism that inactivates Noxa's apoptotic function and triggers its capacity to modulate glucose metabolism. - The Chromatin Signaling Pathway: Diverse Mechanisms of Recruitment of Histone-Modifying Enzymes and Varied Biological Outcomes
- mol cell 40(5):689-701 (2010)
Posttranslational modifications of histones are coupled in the regulation of the cellular processes involving chromatin, such as transcription, replication, repair, and genome stability. Recent biochemical and genetic studies have clearly demonstrated that many aspects of chromatin, in addition to posttranslational modifications of histones, provide surfaces that can interact with effectors and the modifying machineries in a context-dependent manner, all as a part of the "chromatin signaling pathway." Here, we have reviewed recent findings on the molecular basis for the recruitment of the chromatin-modifying machineries and their diverse and varied biological outcomes. - Epigenetic Instability due to Defective Replication of Structured DNA
- mol cell 40(5):703-713 (2010)
The accurate propagation of histone marks during chromosomal replication is proposed to rely on the tight coupling of replication with the recycling of parental histones to the daughter strands. Here, we show in the avian cell line DT40 that REV1, a key regulator of DNA translesion synthesis at the replication fork, is required for the maintenance of repressive chromatin marks and gene silencing in the vicinity of DNA capable of forming G-quadruplex (G4) structures. We demonstrate a previously unappreciated requirement for REV1 in replication of G4 forming sequences and show that transplanting a G4 forming sequence into a silent locus leads to its derepression in REV1-deficient cells. Together, our observations support a model in which failure to maintain processive DNA replication at G4 DNA in REV1-deficient cells leads to uncoupling of DNA synthesis from histone recycling, resulting in localized loss of repressive chromatin through biased incorporation of newly synth! esized histones. - Regulation and Rate Enhancement during Transcription-Coupled DNA Repair
- mol cell 40(5):714-724 (2010)
Transcription-coupled DNA repair (TCR) is a subpathway of nucleotide excision repair (NER) that is triggered when RNA polymerase is stalled by DNA damage. Lesions targeted by TCR are repaired more quickly than lesions repaired by the transcription-independent "global" NER pathway, but the mechanism underlying this rate enhancement is not understood. Damage recognition during bacterial NER depends upon UvrA, which binds to the damage and loads UvrB onto the DNA. Bacterial TCR additionally requires the Mfd protein, a DNA translocase that removes the stalled transcription complexes. We have determined the properties of Mfd, UvrA, and UvrB that are required for the elevated rate of repair observed during TCR. We show that TCR and global NER differ in their requirements for damage recognition by UvrA, indicating that Mfd acts at the very earliest stage of the repair process and extending the functional similarities between TCR in bacteria and eukaryotes. - Structure and Biological Importance of the Spn1-Spt6 Interaction, and Its Regulatory Role in Nucleosome Binding
- mol cell 40(5):725-735 (2010)
Eukaryotic transcription and mRNA processing depend upon the coordinated interactions of many proteins, including Spn1 and Spt6, which are conserved across eukaryotes, are essential for viability, and associate with each other in some of their biologically important contexts. Here we report crystal structures of the Spn1 core alone and in complex with the binding determinant of Spt6. Mutating interface residues greatly diminishes binding in vitro and causes strong phenotypes in vivo, including a defect in maintaining repressive chromatin. Overexpression of Spn1 partially suppresses the defects caused by an spt6 mutation affecting the Spn1 interface, indicating that the Spn1-Spt6 interaction is important for managing chromatin. Spt6 binds nucleosomes directly in vitro, and this interaction is blocked by Spn1, providing further mechanistic insight into the function of the interaction. These data thereby reveal the structural and biochemical bases of molecular interaction! s that function in the maintenance of chromatin structure. - Conserved Antagonism between JMJD2A/KDM4A and HP1γ during Cell Cycle Progression
- mol cell 40(5):736-748 (2010)
The KDM4/JMJD2 family of histone demethylases is amplified in human cancers. However, little is known about their physiologic or tumorigenic roles. We have identified a conserved and unappreciated role for the JMJD2A/KDM4A H3K9/36 tridemethylase in cell cycle progression. We demonstrate that JMJD2A protein levels are regulated in a cell cycle-dependent manner and that JMJD2A overexpression increased chromatin accessibility, S phase progression, and altered replication timing of specific genomic loci. These phenotypes depended on JMJD2A enzymatic activity. Strikingly, depletion of the only C. elegans homolog, JMJD-2, slowed DNA replication and increased ATR/p53-dependent apoptosis. Importantly, overexpression of HP1γ antagonized JMJD2A-dependent progression through S phase, and depletion of HPL-2 rescued the DNA replication-related phenotypes in jmjd-2−/− animals. Our findings describe a highly conserved model whereby JMJD2A regulates DNA replication by antagonizin! g HP1γ and controlling chromatin accessibility. - Taf1 Regulates Pax3 Protein by Monoubiquitination in Skeletal Muscle Progenitors
- mol cell 40(5):749-761 (2010)
Pax3 plays critical roles during developmental and postnatal myogenesis. We have previously shown that levels of Pax3 protein are regulated by monoubiquitination and proteasomal degradation during postnatal myogenesis, but none of the key regulators of the monoubiquitination process were known. Here we show that Pax3 monoubiquitination is mediated by the ubiquitin-activating/conjugating activity of Taf1, a component of the core transcriptional machinery that was recently reported to be downregulated during myogenic differentiation. We show that Taf1 binds directly to Pax3 and overexpression of Taf1 increases the level of monoubiquitinated Pax3 and its degradation by the proteasome. A decrease of Taf1 results in a decrease in Pax3 monoubiquitination, an increase in the levels of Pax3 protein, and a concomitant increase in Pax3-mediated inhibition of myogenic differentiation and myoblast migration. These results suggest that Taf1 regulates Pax3 protein levels through its! ability to mediate monoubiquitination, revealing a critical interaction between two proteins that are involved in distinct aspects of myogenic differentiation. Finally, these results suggest that the components of the core transcriptional are integrally involved in the process of myogenic differentiation, acting as nodal regulators of the differentiation program. - The miR-17-92 MicroRNA Cluster Regulates Multiple Components of the TGF-β Pathway in Neuroblastoma
- mol cell 40(5):762-773 (2010)
The miR-17-92 microRNA cluster is often activated in cancer cells, but the identity of its targets remains elusive. Using SILAC and quantitative mass spectrometry, we examined the effects of activation of the miR-17-92 cluster on global protein expression in neuroblastoma (NB) cells. Our results reveal cooperation between individual miR-17-92 miRNAs and implicate miR-17-92 in multiple hallmarks of cancer, including proliferation and cell adhesion. Most importantly, we show that miR-17-92 is a potent inhibitor of TGF-β signaling. By functioning both upstream and downstream of pSMAD2, miR-17-92 activation triggers downregulation of multiple key effectors along the TGF-β signaling cascade as well as direct inhibition of TGF-β-responsive genes. - Structural Insights into Ligand Recognition by a Sensing Domain of the Cooperative Glycine Riboswitch
- mol cell 40(5):774-786 (2010)
Glycine riboswitches regulate gene expression by feedback modulation in response to cooperative binding to glycine. Here, we report on crystal structures of the second glycine-sensing domain from the Vibrio cholerae riboswitch in the ligand-bound and unbound states. This domain adopts a three-helical fold that centers on a three-way junction and accommodates glycine within a bulge-containing binding pocket above the junction. Glycine recognition is facilitated by a pair of bound Mg2+ cations and governed by specific interactions and shape complementarity with the pocket. A conserved adenine extrudes from the binding pocket and intercalates into the junction implying that glycine binding in the context of the complete riboswitch could impact on gene expression by stabilizing the riboswitch junction and regulatory P1 helix. Analysis of riboswitch interactions in the crystal and footprinting experiments indicates that adjacent glycine-sensing modules of the riboswitch cou! ld form specific interdomain interactions, thereby potentially contributing to the cooperative response. - Oxidative Protein Folding by an Endoplasmic Reticulum-Localized Peroxiredoxin
- mol cell 40(5):787-797 (2010)
Endoplasmic reticulum (ER) oxidation 1 (ERO1) transfers disulfides to protein disulfide isomerase (PDI) and is essential for oxidative protein folding in simple eukaryotes such as yeast and worms. Surprisingly, ERO1-deficient mammalian cells exhibit only a modest delay in disulfide bond formation. To identify ERO1-independent pathways to disulfide bond formation, we purified PDI oxidants with a trapping mutant of PDI. Peroxiredoxin IV (PRDX4) stood out in this list, as the related cytosolic peroxiredoxins are known to form disulfides in the presence of hydroperoxides. Mouse embryo fibroblasts lacking ERO1 were intolerant of PRDX4 knockdown. Introduction of wild-type mammalian PRDX4 into the ER rescued the temperature-sensitive phenotype of an ero1 yeast mutation. In the presence of an H2O2-generating system, purified PRDX4 oxidized PDI and reconstituted oxidative folding of RNase A. These observations implicate ER-localized PRDX4 in a previously unanticipated, parallel! , ERO1-independent pathway that couples hydroperoxide production to oxidative protein folding in mammalian cells. - The Dynamic Distribution of CARD11 at the Immunological Synapse Is Regulated by the Inhibitory Kinesin GAKIN
- mol cell 40(5):798-809 (2010)
T cell receptor (TCR) signaling to NF-κB is required for antigen-induced T cell activation. We conducted an expression-cloning screen for modifiers of CARD11, a critical adaptor in antigen receptor signaling, and identified the kinesin-3 family member GAKIN as a CARD11 inhibitor. GAKIN negatively regulates TCR signaling to NF-κB, associates with CARD11 in a signal-dependent manner and can compete with the required signaling protein, Bcl10, for association. In addition, GAKIN dynamically localizes to the immunological synapse and regulates the redistribution of CARD11 from the central region of the synapse to a distal region. We propose that CARD11 scaffold function and occupancy at the center of the synapse are negatively regulated by GAKIN to tune the output of antigen-receptor signaling. - Systematic In Vivo RNAi Analysis Identifies IAPs as NEDD8-E3 Ligases
- mol cell 40(5):810-822 (2010)
The intimate relationship between mediators of the ubiquitin (Ub)-signaling system and human diseases has sparked profound interest in how Ub influences cell death and survival. While the consequence of Ub attachment is intensely studied, little is known with regards to the effects of other Ub-like proteins (UBLs), and deconjugating enzymes that remove the Ub or UBL adduct. Systematic in vivo RNAi analysis identified three NEDD8-specific isopeptidases that, when knocked down, suppress apoptosis. Consistent with the notion that attachment of NEDD8 prevents cell death, genetic ablation of deneddylase 1 (DEN1) suppresses apoptosis. Unexpectedly, we find that Drosophila and human inhibitor of apoptosis (IAP) proteins can function as E3 ligases of the NEDD8 conjugation pathway, targeting effector caspases for neddylation and inactivation. Finally, we demonstrate that DEN1 reverses this effect by removing the NEDD8 modification. Altogether, our findings indicate that IAPs no! t only modulate cellular processes via ubiquitylation but also through attachment of NEDD8, thereby extending the complexity of IAP-mediated signaling. - The Proapoptotic Function of Noxa in Human Leukemia Cells Is Regulated by the Kinase Cdk5 and by Glucose
- mol cell 40(5):823-833 (2010)
The BH3-only protein, Noxa, is induced in response to apoptotic stimuli, such as DNA damage, hypoxia, and proteasome inhibition in most human cells. Noxa is constitutively expressed in proliferating cells of hematopoietic lineage and required for apoptosis in response to glucose stress. We show that Noxa is phosphorylated on a serine residue (S13) in the presence of glucose. Phosphorylation promotes its cytosolic sequestration and suppresses its apoptotic function. We identify Cdk5 as the Noxa kinase and show that Cdk5 knockdown or expression of a Noxa S13 to A mutant increases sensitivity to glucose starvation, confirming that the phosphorylation is protective. Both glucose deprivation and Cdk5 inhibition promote apoptosis by dephosphorylating Noxa. Paradoxically, Noxa stimulates glucose consumption and may enhance glucose turnover via the pentose phosphate pathway rather than through glycolysis. We propose that Noxa plays both growth-promoting and proapoptotic roles ! in hematopoietic cancers with phospho-S13 as the glucose-sensitive toggle switch controlling these opposing functions. - Uncoupling of Sister Replisomes during Eukaryotic DNA Replication
- mol cell 40(5):834-840 (2010)
The duplication of eukaryotic genomes involves the replication of DNA from multiple origins of replication. In S phase, two sister replisomes assemble at each active origin, and they replicate DNA in opposite directions. Little is known about the functional relationship between sister replisomes. Some data imply that they travel away from one another and thus function independently. Alternatively, sister replisomes may form a stationary, functional unit that draws parental DNA toward itself. If this "double replisome" model is correct, a constrained DNA molecule should not undergo replication. To test this prediction, lambda DNA was stretched and immobilized at both ends within a microfluidic flow cell. Upon exposure to Xenopus egg extracts, this DNA underwent extensive replication by a single pair of diverging replisomes. The data show that there is no obligatory coupling between sister replisomes and, together with other studies, imply that genome duplication inv! olves autonomously functioning replisomes. - Intronic miR-211 Assumes the Tumor Suppressive Function of Its Host Gene in Melanoma
- mol cell 40(5):841-849 (2010)
When it escapes early detection, malignant melanoma becomes a highly lethal and treatment-refractory cancer. Melastatin is greatly downregulated in metastatic melanomas and is widely believed to function as a melanoma tumor suppressor. Here we report that tumor suppressive activity is not mediated by melastatin but instead by a microRNA (miR-211) hosted within an intron of melastatin. Increasing expression of miR-211 but not melastatin reduced migration and invasion of malignant and highly invasive human melanomas characterized by low levels of melastatin and miR-211. An unbiased network analysis of melanoma-expressed genes filtered for their roles in metastasis identified three central node genes: IGF2R, TGFBR2, and NFAT5. Expression of these genes was reduced by miR-211, and knockdown of each gene phenocopied the effects of increased miR-211 on melanoma invasiveness. These data implicate miR-211 as a suppressor of melanoma invasion whose expression is silenced or sel! ected against via suppression of the entire melastatin locus during human melanoma progression.
No comments:
Post a Comment