Friday, October 8, 2010

Hot off the presses! Oct 08 mol cell

The Oct 08 issue of the mol cell is now up on Pubget (About mol cell): if you're at a subscribing institution, just click the link in the latest link at the home page. (Note you'll only be able to get all the PDFs in the issue if your institution subscribes to Pubget.)

Latest Articles Include:

  • Chk-ing in and Chk-ing out: Kinase Compartmentalization Comes to Checkpoint Control
    - mol cell 40(1):1-2 (2010)
    Checkpoints are the sentinels of cell-cycle progression. In this issue of Molecular Cell, Yaffe and colleagues (Reinhardt et al., 2010) show that spatial and temporal resolution of Chk1 and MK2, checkpoint kinases with identical substrate specificity, are necessary to signal different aspects of DNA damage signaling.
  • Should INO Stay or Should INO Go: A DNA "Zip Code" Mediates Gene Retention at the Nuclear Pore
    - mol cell 40(1):3-5 (2010)
    In this issue of Molecular Cell, Brickner and colleagues (Light et al., 2010) identify a DNA sequence that mediates transcriptional memory and retention of recently active INO1 at the nuclear pore complex.
  • The Special Delivery of a Tail-Anchored Protein: Why It Pays to Use a Dedicated Courier
    - mol cell 40(1):5-7 (2010)
    The membrane-spanning C-terminal regions in tail-anchored proteins must be recognized and delivered posttranslationally to the endoplasmic reticulum or mitochondrial membrane. A paper in this issue of Molecular Cell (Wang et al., 2010) and another recent report (Mariappan et al., 2010) delineate early steps in this pathway.
  • CRL4Cdt2 Regulates Cell Proliferation and Histone Gene Expression by Targeting PR-Set7/Set8 for Degradation
    - mol cell 40(1):9-21 (2010)
    PR-Set7/Set8 is a cell-cycle-regulated enzyme that monomethylates lysine 20 of histone H4 (H4K20). Set8 and monomethylated H4K20 are virtually undetectable during G1 and S phases of the cell cycle but increase in late S and in G2. We identify CRL4Cdt2 as the principal E3 ubiquitin ligase responsible for Set8 proteolytic degradation in the S phase of the cell cycle, which requires Set8-PCNA interaction. Inactivation of the CRL4–Cdt2-PCNA-Set8 degradation axis results in (1) DNA damage and the induction of tumor suppressor p53 and p53-transactivated proapoptotic genes, (2) delayed progression through G2 phase of the cell cycle due to activation of the G2/M checkpoint, (3) specific repression of histone gene transcription and depletion of the histone proteins, and (4) repression of E2F1-dependent gene transcription. These results demonstrate a central role of CRL4Cdt2-dependent cell-cycle regulation of Set8 for the maintenance of a stable epigenetic state essential for ! cell viability.
  • CRL4Cdt2-Mediated Destruction of the Histone Methyltransferase Set8 Prevents Premature Chromatin Compaction in S Phase
    - mol cell 40(1):22-33 (2010)
    The proper coordination between DNA replication and mitosis during cell-cycle progression is crucial for genomic stability. During G2 and mitosis, Set8 catalyzes monomethylation of histone H4 on lysine 20 (H4K20me1), which promotes chromatin compaction. Set8 levels decline in S phase, but why and how this occurs is unclear. Here, we show that Set8 is targeted for proteolysis in S phase and in response to DNA damage by the E3 ubiquitin ligase, CRL4Cdt2. Set8 ubiquitylation occurs on chromatin and is coupled to DNA replication via a specific degron in Set8 that binds PCNA. Inactivation of CRL4Cdt2 leads to Set8 stabilization and aberrant H4K20me1 accumulation in replicating cells. Transient S phase expression of a Set8 mutant lacking the degron promotes premature H4K20me1 accumulation and chromatin compaction, and triggers a checkpoint-mediated G2 arrest. Thus, CRL4Cdt2-dependent destruction of Set8 in S phase preserves genome stability by preventing aberrant chromatin c! ompaction during DNA synthesis.
  • DNA Damage Activates a Spatially Distinct Late Cytoplasmic Cell-Cycle Checkpoint Network Controlled by MK2-Mediated RNA Stabilization
    - mol cell 40(1):34-49 (2010)
    Following genotoxic stress, cells activate a complex kinase-based signaling network to arrest the cell cycle and initiate DNA repair. p53-defective tumor cells rewire their checkpoint response and become dependent on the p38/MK2 pathway for survival after DNA damage, despite a functional ATR-Chk1 pathway. We used functional genetics to dissect the contributions of Chk1 and MK2 to checkpoint control. We show that nuclear Chk1 activity is essential to establish a G2/M checkpoint, while cytoplasmic MK2 activity is critical for prolonged checkpoint maintenance through a process of posttranscriptional mRNA stabilization. Following DNA damage, the p38/MK2 complex relocalizes from nucleus to cytoplasm where MK2 phosphorylates hnRNPA0, to stabilize Gadd45α mRNA, while p38 phosphorylates and releases the translational inhibitor TIAR. In addition, MK2 phosphorylates PARN, blocking Gadd45α mRNA degradation. Gadd45α functions within a positive feedback loop, sustaining the MK2-! dependent cytoplasmic sequestration of Cdc25B/C to block mitotic entry in the presence of unrepaired DNA damage. Our findings demonstrate a critical role for the MK2 pathway in the posttranscriptional regulation of gene expression as part of the DNA damage response in cancer cells.
  • Exo1 Competes with Repair Synthesis, Converts NER Intermediates to Long ssDNA Gaps, and Promotes Checkpoint Activation
    - mol cell 40(1):50-62 (2010)
    Ultraviolet (UV) light induces DNA-damage checkpoints and mutagenesis, which are involved in cancer protection and tumorigenesis, respectively. How cells identify DNA lesions and convert them to checkpoint-activating structures is a major question. We show that during repair of UV lesions in noncycling cells, Exo1-mediated processing of nucleotide excision repair (NER) intermediates competes with repair DNA synthesis. Impediments of the refilling reaction allow Exo1 to generate extended ssDNA gaps, detectable by electron microscopy, which drive Mec1 kinase activation and will be refilled by long-patch repair synthesis, as shown by DNA combing. We provide evidence that this mechanism may be stimulated by closely opposing UV lesions, represents a strategy to redirect problematic repair intermediates to alternative repair pathways, and may also be extended to physically different DNA damages. Our work has significant implications for understanding the coordination between! repair of DNA lesions and checkpoint pathways to preserve genome stability.
  • A Cytoplasmic ATM-TRAF6-cIAP1 Module Links Nuclear DNA Damage Signaling to Ubiquitin-Mediated NF-κB Activation
    - mol cell 40(1):63-74 (2010)
    As part of the genotoxic stress response, cells activate the transcription factor NF-κB. The DNA strand break sensor poly(ADP-ribose)-polymerase-1 (PARP-1) and the kinase ataxia telangiectasia mutated (ATM) act as proximal signal mediators. PARP-1 assembles a nucleoplasmic signalosome, which triggers PIASy-mediated IKKγ SUMOylation. ATM-dependent IKKγ phosphorylation and subsequent ubiquitination were implicated to activate the cytoplasmic IκB kinase (IKK) complex by unknown mechanisms. We show that activated ATM translocates in a calcium-dependent manner to cytosol and membrane fractions. Through a TRAF-binding motif, ATM activates TRAF6, resulting in Ubc13-mediated K63-linked polyubiquitin synthesis and cIAP1 recruitment. The ATM-TRAF6-cIAP1 module stimulates TAB2-dependent TAK1 phosphorylation. Both nuclear PARP-1- and cytoplasmic ATM-driven signaling branches converge at the IKK complex to catalyze monoubiquitination of IKKγ at K285. Our data indicate that exp! orted SUMOylated IKKγ acts as a substrate. IKKγ monoubiquitination is a prerequisite for genotoxic IKK and NF-κB activation, but also promotes cytokine signaling.
  • ATM- and NEMO-Dependent ELKS Ubiquitination Coordinates TAK1-Mediated IKK Activation in Response to Genotoxic Stress
    - mol cell 40(1):75-86 (2010)
    Activation of the transcription factor NF-κB by multiple genotoxic stimuli modulates cancer cell survival. This response is mediated by a conserved pathway involving the nuclear ATM kinase and cytoplasmic IκB kinase (IKK); however, the molecular link between them remains incompletely understood. Here we show that ATM activates the IKK kinase TAK1 in a manner dependent on IKKγ/NEMO and ELKS (a protein rich in glutamate, leucine, lysine, and serine). K63-linked polyubiquitination of ELKS, dependent on the ubiquitin ligase XIAP and the conjugating enzyme UBC13, allows ELKS association with TAK1 via its ubiquitin-binding subunits TAB2/3. Although NEMO mutants defective in ubiquitin binding permit ATM-dependent TAK1 activation, they block NEMO association with ELKS and IKK activation. Thus, ATM- and NEMO-dependent ubiquitination of ELKS leads to the ubiquitin-dependent assembly of TAK1/TAB2/3 and NEMO/IKK complexes, resulting in IKK and NF-κB activation following genoto! xic stimuli.
  • Dynamic Control of Yeast MAP Kinase Network by Induced Association and Dissociation between the Ste50 Scaffold and the Opy2 Membrane Anchor
    - mol cell 40(1):87-98 (2010)
    Membrane localization of the Ste11 MAPKKK is essential for activation of both the filamentous growth/invasive growth (FG/IG) MAP kinase (MAPK) pathway and the SHO1 branch of the osmoregulatory HOG MAPK pathway, and is mediated by binding of the Ste50 scaffold protein to the Opy2 membrane anchor. We found that Opy2 has two major (CR-A and CR-B), and one minor (CR-D), binding sites for Ste50. CR-A binds Ste50 constitutively and can transmit signals to both the Hog1 and Fus3/Kss1 MAPKs. CR-B, in contrast, binds Ste50 only when Opy2 is phosphorylated by Yck1/Yck2 under glucose-rich conditions and transmits the signal preferentially to the Hog1 MAPK. Ste50 phosphorylation by activated Hog1/Fus3/Kss1 MAPKs downregulates the HOG MAPK pathway by dissociating Ste50 from Opy2. Furthermore, Ste50 phosphorylation, together with MAPK-specific protein phosphatases, reduces the basal activity of the HOG and the mating MAPK pathways. Thus, dynamic regulation of Ste50-Opy2 interaction ! fine-tunes the MAPK signaling network.
  • A WD-Repeat Protein Stabilizes ORC Binding to Chromatin
    - mol cell 40(1):99-111 (2010)
    Origin recognition complex (ORC) plays critical roles in the initiation of DNA replication and cell-cycle progression. In metazoans, ORC associates with origin DNA during G1 and with heterochromatin in postreplicated cells. However, what regulates the binding of ORC to chromatin is not understood. We have identified a highly conserved, leucine-rich repeats and WD40 repeat domain-containing protein 1 (LRWD1) or ORC-associated (ORCA) in human cells that interacts with ORC and modulates chromatin association of ORC. ORCA colocalizes with ORC and shows similar cell-cycle dynamics. We demonstrate that ORCA efficiently recruits ORC to chromatin. Depletion of ORCA in human primary cells and embryonic stem cells results in loss of ORC association to chromatin, concomitant reduction of MCM binding, and a subsequent accumulation in G1 phase. Our results suggest ORCA-mediated association of ORC to chromatin is critical to initiate preRC assembly in G1 and chromatin organization i! n post-G1 cells.
  • Interaction of a DNA Zip Code with the Nuclear Pore Complex Promotes H2A.Z Incorporation and INO1 Transcriptional Memory
    - mol cell 40(1):112-125 (2010)
    DNA "zip codes" in the promoters of yeast genes confer interaction with the NPC and localization at the nuclear periphery upon activation. Some of these genes exhibit transcriptional memory: after being repressed, they remain at the nuclear periphery for several generations, primed for reactivation. Transcriptional memory requires the histone variant H2A.Z. We find that targeting of active INO1 and recently repressed INO1 to the nuclear periphery is controlled by two distinct and independent mechanisms involving different zip codes and different interactions with the NPC. An 11 base pair memory recruitment sequence (MRS) in the INO1 promoter controls both peripheral targeting and H2A.Z incorporation after repression. In cells lacking either the MRS or the NPC protein Nup100, INO1 transcriptional memory is lost, leading to nucleoplasmic localization after repression and slower reactivation of the gene. Thus, interaction of recently repressed INO1 with the NPC alters! its chromatin structure and rate of reactivation.
  • Phosphorylation-Dependent Regulation of PSF by GSK3 Controls CD45 Alternative Splicing
    - mol cell 40(1):126-137 (2010)
    Signal-induced alternative splicing of the CD45 gene in human T cells is essential for proper immune function. Skipping of the CD45 variable exons is controlled, in large part, by the recruitment of PSF to the pre-mRNA substrate upon T cell activation; however, the signaling cascade leading to exon exclusion has remained elusive. Here we demonstrate that in resting T cells PSF is directly phosphorylated by GSK3, thus promoting interaction of PSF with TRAP150, which prevents PSF from binding CD45 pre-mRNA. Upon T cell activation, reduced GSK3 activity leads to reduced PSF phosphorylation, releasing PSF from TRAP150 and allowing it to bind CD45 splicing regulatory elements and repress exon inclusion. Our data place two players, GSK3 and TRAP150, in the complex network that regulates CD45 alternative splicing and demonstrate a paradigm for signal transduction from the cell surface to the RNA processing machinery through the multifunctional protein PSF.
  • Structural Basis for Translational Stalling by Human Cytomegalovirus and Fungal Arginine Attenuator Peptide
    - mol cell 40(1):138-146 (2010)
    Specific regulatory nascent chains establish direct interactions with the ribosomal tunnel, leading to translational stalling. Despite a wealth of biochemical data, structural insight into the mechanism of translational stalling in eukaryotes is still lacking. Here we use cryo-electron microscopy to visualize eukaryotic ribosomes stalled during the translation of two diverse regulatory peptides: the fungal arginine attenuator peptide (AAP) and the human cytomegalovirus (hCMV) gp48 upstream open reading frame 2 (uORF2). The C terminus of the AAP appears to be compacted adjacent to the peptidyl transferase center (PTC). Both nascent chains interact with ribosomal proteins L4 and L17 at tunnel constriction in a distinct fashion. Significant changes at the PTC were observed: the eukaryotic-specific loop of ribosomal protein L10e establishes direct contact with the CCA end of the peptidyl-tRNA (P-tRNA), which may be critical for silencing of the PTC during translational sta! lling. Our findings provide direct structural insight into two distinct eukaryotic stalling processes.
  • Proteasomal Degradation Is Transcriptionally Controlled by TCF11 via an ERAD-Dependent Feedback Loop
    - mol cell 40(1):147-158 (2010)
    Coordinated regulation of the ubiquitin-proteasome system (UPS) is crucial for the cell to adjust its protein degradation capacity to changing proteolytic requirements. We have shown previously that mammalian cells upregulate proteasome gene expression in response to proteasome inhibition. Here, we report the identification of the transcription factor TCF11 (long isoform of Nrf1) as a key regulator for 26S proteasome formation in human cells to compensate for reduced proteolytic activity. Under noninducing conditions, TCF11 resides in the endoplasmic reticulum (ER) membrane. There, TCF11 is targeted to ER-associated protein degradation requiring the E3 ubiquitin ligase HRD1 and the AAA ATPase p97. Proteasome inhibitors trigger the accumulation of oxidant-damaged proteins and promote the nuclear translocation of TCF11 from the ER, permitting activation of proteasome gene expression by binding to antioxidant response elements in their promoter regions. Thus, we uncovered! the transcriptional control loop regulating human proteasome-dependent protein degradation to counteract proteotoxic stress caused by proteasome inhibition.
  • A Chaperone Cascade Sorts Proteins for Posttranslational Membrane Insertion into the Endoplasmic Reticulum
    Wang F Brown EC Mak G Zhuang J Denic V - mol cell 40(1):159-171 (2010)
    Tail-anchored (TA) proteins are posttranslationally inserted into either the endoplasmic reticulum (ER) or the mitochondrial outer membrane. The C-terminal transmembrane domains (TMDs) of TA proteins enable their many essential cellular functions by specifying the membrane target, but how cells process these targeting signals is poorly understood. Here, we reveal the composition of a conserved multiprotein TMD recognition complex (TRC) and show that distinct TRC subunits recognize the two types of TMD signals. By engineering mutations in a mitochondrial TMD, we switch over its TRC subunit recognition, thus leading to its misinsertion into the ER. Biochemical reconstitution with purified components demonstrates that TRC tethers and enzymatically activates Get3 to selectively hand off ER-bound TA proteins to Get3. Thus, ER-bound TA proteins are sorted at the top of a TMD chaperone cascade that culminates with the formation of Get3-TA protein complexes, which are recruite! d to the ER membrane for insertion.

No comments: