Thursday, July 9, 2009

Hot off the presses! Jul 10 Am J Hum Genet

The Jul 10 issue of the Am J Hum Genet is now up on Pubget (About Am J Hum Genet): if you're at a subscribing institution, just click the link in the latest link at the home page. (Note you'll only be able to get all the PDFs in the issue if your institution subscribes to Pubget.)

Latest Articles Include:

  • This Month in The Journal
    - Am J Hum Genet 85(1):1-2 (2009)
  • This Month in Genetics
    - Am J Hum Genet 85(1):3-5 (2009)
  • Closing the Gap: Inverting the Genetics Curriculum to Ensure an Informed Public
    - Am J Hum Genet 85(1):6-12 (2009)
    Over the past 20 years, the focus of national efforts to improve K-12 science education has ranged from curriculum and professional development of teachers to the adoption of science standards and high-stakes testing. In spite of this work, students in the United States continue to lag behind their peers in other countries. This underperformance is true for genetics, as well as for science and math in general, and is particularly worrisome given the accelerating need for scientists and engineers in our increasingly technology-driven economy. A scientifically literate public is essential if citizens are to engage effectively with policymakers on issues of scientific importance. Perhaps nowhere is this conjunction more personally meaningful than in human genetics and medicine. Rapid changes in our field have the potential to revolutionize healthcare, but the public is ill prepared to participate in this transformation. One potential solution is to modernize the genetics ! curriculum so that it matches the science of the 21st century. This paper highlights changes in human genetics that support a curricular reorganization, outlines the problems with current genetics instruction, and proposes a new genetics curriculum.
  • Gene Ontology Analysis of GWA Study Data Sets Provides Insights into the Biology of Bipolar Disorder
    - Am J Hum Genet 85(1):13-24 (2009)
    We present a method for testing overrepresentation of biological pathways, indexed by gene-ontology terms, in lists of significant SNPs from genome-wide association studies. This method corrects for linkage disequilibrium between SNPs, variable gene size, and multiple testing of nonindependent pathways. The method was applied to the Wellcome Trust Case-Control Consortium Crohn disease (CD) data set. At a general level, the biological basis of CD is relatively well known for a complex genetic trait, and it thus acted as a test of the method. The method, known as ALIGATOR (Association LIst Go AnnoTatOR), successfully detected biological pathways implicated in CD. The method was also applied to a meta-analysis of bipolar disorder, and it implicated the modulation of transcription and cellular activity, including that which occurs via hormonal action, as an important player in pathogenesis.
  • Noncoding Mutations of HGF Are Associated with Nonsyndromic Hearing Loss, DFNB39
    - Am J Hum Genet 85(1):25-39 (2009)
    A gene causing autosomal-recessive, nonsyndromic hearing loss, DFNB39, was previously mapped to an 18 Mb interval on chromosome 7q11.22-q21.12. We mapped an additional 40 consanguineous families segregating nonsyndromic hearing loss to the DFNB39 locus and refined the obligate interval to 1.2 Mb. The coding regions of all genes in this interval were sequenced, and no missense, nonsense, or frameshift mutations were found. We sequenced the noncoding sequences of genes, as well as noncoding genes, and found three mutations clustered in intron 4 and exon 5 in the hepatocyte growth factor gene (HGF). Two intron 4 deletions occur in a highly conserved sequence that is part of the 3′ untranslated region of a previously undescribed short isoform of HGF. The third mutation is a silent substitution, and we demonstrate that it affects splicing in vitro. HGF is involved in a wide variety of signaling pathways in many different tissues, yet these putative regulatory mutations ca! use a surprisingly specific phenotype, which is nonsydromic hearing loss. Two mouse models of Hgf dysregulation, one in which an Hgf transgene is ubiquitously overexpressed and the other a conditional knockout that deletes Hgf from a limited number of tissues, including the cochlea, result in deafness. Overexpression of HGF is associated with progressive degeneration of outer hair cells in the cochlea, whereas cochlear deletion of Hgf is associated with more general dysplasia.
  • Mutation in the AP4M1 Gene Provides a Model for Neuroaxonal Injury in Cerebral Palsy
    - Am J Hum Genet 85(1):40-52 (2009)
    Cerebral palsy due to perinatal injury to cerebral white matter is usually not caused by genetic mutations, but by ischemia and/or inflammation. Here, we describe an autosomal-recessive type of tetraplegic cerebral palsy with mental retardation, reduction of cerebral white matter, and atrophy of the cerebellum in an inbred sibship. The phenotype was recorded and evolution followed for over 20 years. Brain lesions were studied by diffusion tensor MR tractography. Homozygosity mapping with SNPs was performed for identification of the chromosomal locus for the disease. In the 14 Mb candidate region on chromosome 7q22, RNA expression profiling was used for selecting among the 203 genes in the area. In postmortem brain tissue available from one patient, histology and immunohistochemistry were performed. Disease course and imaging were mostly reminiscent of hypoxic-ischemic tetraplegic cerebral palsy, with neuroaxonal degeneration and white matter loss. In all five patients, a donor splice site pathogenic mutation in intron 14 of the AP4M1 gene (c.1137+1G→T), was identified. AP4M1, encoding for the μ subunit of the adaptor protein complex-4, is involved in intracellular trafficking of glutamate receptors. Aberrant GluRδ2 glutamate receptor localization and dendritic spine morphology were observed in the postmortem brain specimen. This disease entity, which we refer to as congenital spastic tetraplegia (CST), is therefore a genetic mod! el for congenital cerebral palsy with evidence for neuroaxonal damage and glutamate receptor abnormality, mimicking perinatally acquired hypoxic-ischemic white matter injury.
  • Multiple Synostoses Syndrome Is Due to a Missense Mutation in Exon 2 of FGF9 Gene
    - Am J Hum Genet 85(1):53-63 (2009)
    Fibroblast growth factors (FGFs) play diverse roles in several developmental processes. Mutations leading to deregulated FGF signaling can cause human skeletal dysplasias and cancer.[1] and [2] Here we report a missense mutation (Ser99Asp) in exon 2 of FGF9 in 12 patients with multiple synostoses syndrome (SYNS) in a large Chinese family. In vitro studies demonstrate that FGF9S99N is expressed and secreted as efficiently as wild-type FGF9 in transfected cells. However, FGF9S99N induces compromised chondrocyte proliferation and differentiation, which is accompanied by enhanced osteogenic differentiation and matrix mineralization of bone marrow-derived mesenchymal stem cells (BMSCs). Biochemical analysis reveals that S99N mutation in FGF9 leads to significantly impaired FGF signaling, as evidenced by diminished activity of Erk1/2 pathway and decreased β-catenin and c-Myc expression when compared with wild-type FGF9. Importantly, the binding of FGF9S99N to its receptor i! s severely impaired although the dimerization ability of mutant FGF9 itself or with wild-type FGF9 is not detectably affected, providing a basis for the defective FGFR signaling. Collectively, our data demonstrate a previously uncharacterized mutation in FGF9 as one of the causes of SYNS, implicating an important role of FGF9 in normal joint development.
  • Diverse Evolutionary Histories for β-adrenoreceptor Genes in Humans
    - Am J Hum Genet 85(1):64-75 (2009)
    In humans, three genes—ADRB1, ADRB2 and ADRB3—encode β-adrenoreceptors (ADRB); these molecules mediate the action of catecholamines in multiple tissues and play pivotal roles in cardiovascular, respiratory, metabolic, and immunological functions. Genetic variants in ADRB genes have been associated with widespread diseases and conditions, but inconsistent results have often been obtained. Here, we addressed the recent evolutionary history of ADRB genes in human populations. Although ADRB1 is neutrally evolving, most tests rejected neutral evolution for ADRB2 in European, African, and Asian population samples. Analysis of inferred haplotypes for ADRB2 revealed three major clades with a coalescence time of 1–1.5 million years, suggesting that the gene is either subjected to balancing selection or undergoing a selective sweep. Haplotype analysis also revealed ethnicity-specific differences. Additionally, we observed significant deviations from Hardy-Weinberg equilib! rium (HWE) for ADRB2 genotypes in distinct European cohorts; HWE deviation depends on sex (only females are in disequilibrium), and genotypes displaying maximum and minimum relative fitness differ across population samples, suggesting a complex situation possibly involving epistasis or maternal selection. Overall, our data indicate that future association studies involving ADRB2 will benefit from taking into account ethnicity-specific haplotype distributions and sex-based effects. With respect to ADRB3, our data indicate that the gene has been subjected to a selective sweep in African populations, the Trp64 variant possibly representing the selection target. Given the previous association of the ancestral ADRB3 Arg64 allele with obesity and type 2 diabetes, dietary adaptations might represent the underlying selective force.
  • Deficiency of Dol-P-Man Synthase Subunit DPM3 Bridges the Congenital Disorders of Glycosylation with the Dystroglycanopathies
    - Am J Hum Genet 85(1):76-86 (2009)
    Alpha-dystroglycanopathies such as Walker Warburg syndrome represent an important subgroup of the muscular dystrophies that have been related to defective O-mannosylation of alpha-dystroglycan. In many patients, the underlying genetic etiology remains unsolved. Isolated muscular dystrophy has not been described in the congenital disorders of glycosylation (CDG) caused by N-linked protein glycosylation defects. Here, we present a genetic N-glycosylation disorder with muscular dystrophy in the group of CDG type I. Extensive biochemical investigations revealed a strongly reduced dolichol-phosphate-mannose (Dol-P-Man) synthase activity. Sequencing of the three DPM subunits and complementation of DPM3-deficient CHO2.38 cells showed a pathogenic p.L85S missense mutation in the strongly conserved coiled-coil domain of DPM3 that tethers catalytic DPM1 to the ER membrane. Cotransfection experiments in CHO cells showed a reduced binding capacity of DPM3(L85S) for DPM1. Investiga! tion of the four Dol-P-Man-dependent glycosylation pathways in the ER revealed strongly reduced O-mannosylation of alpha-dystroglycan in a muscle biopsy, thereby explaining the clinical phenotype of muscular dystrophy. This mild Dol-P-Man biosynthesis defect due to DPM3 mutations is a cause for alpha-dystroglycanopathy, thereby bridging the congenital disorders of glycosylation with the dystroglycanopathies.
  • PRKCA: A Positional Candidate Gene for Body Mass Index and Asthma
    - Am J Hum Genet 85(1):87-96 (2009)
    Asthma incidence and prevalence are higher in obese individuals. A potential mechanistic basis for this relationship is pleiotropy. We hypothesized that significant linkage and candidate-gene association would be found for body mass index (BMI) in a population ascertained on asthma affection status. Linkage analysis for BMI was performed on 657 subjects in eight Costa Rican families enrolled in a study of asthma. Family-based association studies were conducted for BMI with SNPs within a positional candidate gene, PRKCA. SNPs within PRKCA were also tested for association with asthma. Association studies were conducted in 415 Costa Rican parent-child trios and 493 trios participating in the Childhood Asthma Management Program (CAMP). Although only modest evidence of linkage for BMI was obtained for the whole cohort, significant linkage was noted for BMI in females on chromosome 17q (peak LOD = 3.39). Four SNPs in a candidate gene in this region (PRKCA) had unadjusted ass! ociation p values < 0.05 for BMI in both cohorts, with the joint p value for two SNPs remaining significant after adjustment for multiple comparisons (rs228883 and rs1005651, joint p values = 9.5 × 10−5 and 5.6 × 10−5). Similarly, eight SNPs had unadjusted association p values < 0.05 for asthma in both populations, with one SNP remaining significant after adjustment for multiple comparisons (rs11079657, joint p value = 2.6 × 10−5). PRKCA is a pleiotropic locus that is associated with both BMI and asthma and that has been identified via linkage analysis of BMI in a population ascertained on asthma.
  • WNT10A Mutations Are a Frequent Cause of a Broad Spectrum of Ectodermal Dysplasias with Sex-Biased Manifestation Pattern in Heterozygotes
    - Am J Hum Genet 85(1):97-105 (2009)
    Odonto-onycho-dermal dysplasia (OODD), a rare autosomal-recessive inherited form of ectodermal dysplasia including severe oligodontia, nail dystrophy, palmoplantar hyperkeratosis, and hyperhidrosis, was recently shown to be caused by a homozygous nonsense WNT10A mutation in three consanguineous Lebanese families. Here, we report on 12 patients, from 11 unrelated families, with ectodermal dysplasia caused by five previously undescribed WNT10A mutations. In this study, we show that (1) WNT10A mutations cause not only OODD but also other forms of ectodermal dysplasia, reaching from apparently monosymptomatic severe oligodontia to Schöpf-Schulz-Passarge syndrome, which is so far considered a unique entity by the findings of numerous cysts along eyelid margins and the increased risk of benign and malignant skin tumors; (2) WNT10A mutations are a frequent cause of ectodermal dysplasia and were found in about 9% of an unselected patient cohort; (3) about half of the heterozy! gotes (53.8%) show a phenotype manifestation, including mainly tooth and nail anomalies, which was not reported before in OODD; and (4) heterozygotes show a sex-biased manifestation pattern, with a significantly higher proportion of tooth anomalies in males than in females, which may implicate gender-specific differences of WNT10A expression.
  • Loss-of-Function Mutation in the Dioxygenase-Encoding FTO Gene Causes Severe Growth Retardation and Multiple Malformations
    - Am J Hum Genet 85(1):106-111 (2009)
    FTO is a nuclear protein belonging to the AlkB-related non-haem iron- and 2-oxoglutarate-dependent dioxygenase family. Although polymorphisms within the first intron of the FTO gene have been associated with obesity, the physiological role of FTO remains unknown. Here we show that a R316Q mutation, inactivating FTO enzymatic activity, is responsible for an autosomal-recessive lethal syndrome. Cultured skin fibroblasts from affected subjects showed impaired proliferation and accelerated senescence. These findings indicate that FTO is essential for normal development of the central nervous and cardiovascular systems in human and establish that a mutation in a human member of the AlkB-related dioxygenase family results in a severe polymalformation syndrome.
  • Genome-wide Study of Families with Absolute Pitch Reveals Linkage to 8q24.21 and Locus Heterogeneity
    - Am J Hum Genet 85(1):112-119 (2009)
    Absolute pitch (AP) is the rare ability to instantaneously recognize and label tones with their musical note names without using a reference pitch for comparison. The etiology of AP is complex. Prior studies have implicated both genetic and environmental factors in its genesis, yet the molecular basis for AP remains unknown. To locate regions of the human genome that may harbor AP-predisposing genetic variants, we performed a genome-wide linkage study on 73 multiplex AP families by genotyping them with 6090 SNP markers. Nonparametric multipoint linkage analyses were conducted, and the strongest evidence for linkage was observed on chromosome 8q24.21 in the subset of 45 families with European ancestry (exponential LOD score = 3.464, empirical genome-wide p = 0.03). Other regions with suggestive LOD scores included chromosomes 7q22.3, 8q21.11, and 9p21.3. Of these four regions, only the 7q22.3 linkage peak was also evident when 19 families with East Asian ancestry were a! nalyzed separately. Though only one of these regions has yet reached statistical significance individually, we detected a larger number of independent linkage peaks than expected by chance overall, indicating that AP is genetically heterogeneous.
  • Mutation in Pyrroline-5-Carboxylate Reductase 1 Gene in Families with Cutis Laxa Type 2
    - Am J Hum Genet 85(1):120-129 (2009)
    Autosomal-recessive cutis laxa type 2 (ARCL2) is a multisystem disorder characterized by the appearance of premature aging, wrinkled and lax skin, joint laxity, and a general developmental delay. Cutis laxa includes a family of clinically overlapping conditions with confusing nomenclature, generally requiring molecular analyses for definitive diagnosis. Six genes are currently known to mutate to yield one of these related conditions. We ascertained a cohort of typical ARCL2 patients from a subpopulation isolate within eastern Canada. Homozygosity mapping with high-density SNP genotyping excluded all six known genes, and instead identified a single homozygous region near the telomere of chromosome 17, shared identically by state by all genotyped affected individuals from the families. A putative pathogenic variant was identified by direct DNA sequencing of genes within the region. The single nucleotide change leads to a missense mutation adjacent to a splice junction in! the gene encoding pyrroline-5-carboxylate reductase 1 (PYCR1). Bioinformatic analysis predicted a pathogenic effect of the variant on splice donor site function. Skipping of the associated exon was confirmed in RNA from blood lymphocytes of affected homozygotes and heterozygous mutation carriers. Exon skipping leads to deletion of the reductase functional domain-coding region and an obligatory downstream frameshift. PYCR1 plays a critical role in proline biosynthesis. Pathogenicity of the genetic variant in PYCR1 is likely, given that a similar clinical phenotype has been documented for mutation carriers of another proline biosynthetic enzyme, pyrroline-5-carboxylate synthase. Our results support a significant role for proline in normal development.
  • Gene Conversion between the X Chromosome and the Male-Specific Region of the Y Chromosome at a Translocation Hotspot
    - Am J Hum Genet 85(1):130-134 (2009)
    Outside the pseudoautosomal regions, the mammalian sex chromosomes are thought to have been genetically isolated for up to 350 million years. However, in humans pathogenic XY translocations occur in XY-homologous (gametologous) regions, causing sex-reversal and infertility. Gene conversion might accompany recombination intermediates that resolve without translocation and persist in the population. We resequenced X and Y copies of a translocation hotspot adjacent to the PRKX and PRKY genes and found evidence of historical exchange between the male-specific region of the human Y and the X in patchy flanking gene-conversion tracts on both chromosomes. The rate of X-to-Y conversion (per base per generation) is four to five orders of magnitude more rapid than the rate of Y-chromosomal base-substitution mutation, and given assumptions about the recombination history of the X locus, tract lengths have an overall average length of 100 bp. Sequence exchange outside the pseudoau! tosomal regions could play a role in protecting the Y-linked copies of gametologous genes from degeneration.

No comments: