Latest Articles Include:
- Common Disease, Multiple Rare (and Distant) Variants
- PLoS Biol 8(1):e1000293 (2010)
- Evolving Towards Mutualism
Gitig D - PLoS Biol 8(1):e1000279 (2010)
- Targeting Misfolded Proteins to Fight Neurodegenerative Diseases
Heller K - PLoS Biol 8(1):e1000290 (2010)
- SATB1 Makes a Splash in T Cell Wnt Signaling
- PLoS Biol 8(1):e1000295 (2010)
- The Roles of PINK1 and Parkin in Parkinson's Disease
- PLoS Biol 8(1):e1000299 (2010)
- Quiet and Poised: "Silent" Genes Accumulate Transcription Machinery
Robinson R - PLoS Biol 8(1):e1000269 (2010)
- Evolution of Adaptive Behaviour in Robots by Means of Darwinian Selection
- PLoS Biol 8(1):e1000292 (2010)
- Preserving a Space for Science in an Age of Democracy
- PLoS Biol 8(1):e274 (2010)
- University of California Research Seminar Network: A Prospectus
Carey JR Christian Laursen J Glaser SD Raphael S Miller GH Crawford J Lane TF Liwang PJ Hammond K Groves T Pittet JF Stuart D Kolaitis PG Serwer L Chen M Feer K - PLoS Biol 8(1):e1000289 (2010)
By webcasting the hundreds of seminars presented in the University of California system each week, UC educators hope to enhance the exchange of scientific information for their campuses and create the foundation for an international research seminar network. - A Predominantly Neolithic Origin for European Paternal Lineages
Balaresque P Bowden GR Adams SM Leung HY King TE Rosser ZH Goodwin J Moisan JP Richard C Millward A Demaine AG Barbujani G Previderè C Wilson IJ Tyler-Smith C Jobling MA - PLoS Biol 8(1):e1000285 (2010)
The relative contributions to modern European populations of Paleolithic hunter-gatherers and Neolithic farmers from the Near East have been intensely debated. Haplogroup R1b1b2 (R-M269) is the commonest European Y-chromosomal lineage, increasing in frequency from east to west, and carried by 110 million European men. Previous studies suggested a Paleolithic origin, but here we show that the geographical distribution of its microsatellite diversity is best explained by spread from a single source in the Near East via Anatolia during the Neolithic. Taken with evidence on the origins of other haplogroups, this indicates that most European Y chromosomes originate in the Neolithic expansion. This reinterpretation makes Europe a prime example of how technological and cultural change is linked with the expansion of a Y-chromosomal lineage, and the contrast of this pattern with that shown by maternally inherited mitochondrial DNA suggests a unique role for males in the transi! tion. - Ultradeep Sequencing of a Human Ultraconserved Region Reveals Somatic and Constitutional Genomic Instability
De Grassi A Segala C Iannelli F Volorio S Bertario L Radice P Bernard L Ciccarelli FD - PLoS Biol 8(1):e1000275 (2010)
Early detection of cancer-associated genomic instability is crucial, particularly in tumour types in which this instability represents the essential underlying mechanism of tumourigenesis. Currently used methods require the presence of already established neoplastic cells because they only detect clonal mutations. In principle, parallel sequencing of single DNA filaments could reveal the early phases of tumour initiation by detecting low-frequency mutations, provided an adequate depth of coverage and an effective control of the experimental error. We applied ultradeep sequencing to estimate the genomic instability of individuals with hereditary non-polyposis colorectal cancer (HNPCC). To overcome the experimental error, we used an ultraconserved region (UCR) of the human genome as an internal control. By comparing the mutability outside and inside the UCR, we observed a tendency of the ultraconserved element to accumulate significantly fewer mutations than the flanking! segments in both neoplastic and nonneoplastic HNPCC samples. No difference between the two regions was detectable in cells from healthy donors, indicating that all three HNPCC samples have mutation rates higher than the healthy genome. This is the first, to our knowledge, direct evidence of an intrinsic genomic instability of individuals with heterozygous mutations in mismatch repair genes, and constitutes the proof of principle for the development of a more sensitive molecular assay of genomic instability. - Experimental Evolution of a Plant Pathogen into a Legume Symbiont
Marchetti M Capela D Glew M Cruveiller S Chane-Woon-Ming B Gris C Timmers T Poinsot V Gilbert LB Heeb P Médigue C Batut J Masson-Boivin C - PLoS Biol 8(1):e1000280 (2010)
Rhizobia are phylogenetically disparate α- and β-proteobacteria that have achieved the environmentally essential function of fixing atmospheric nitrogen in symbiosis with legumes. Ample evidence indicates that horizontal transfer of symbiotic plasmids/islands has played a crucial role in rhizobia evolution. However, adaptive mechanisms that allow the recipient genomes to express symbiotic traits are unknown. Here, we report on the experimental evolution of a pathogenic Ralstonia solanacearum chimera carrying the symbiotic plasmid of the rhizobium Cupriavidus taiwanensis into Mimosa nodulating and infecting symbionts. Two types of adaptive mutations in the hrpG-controlled virulence pathway of R. solanacearum were identified that are crucial for the transition from pathogenicity towards mutualism. Inactivation of the hrcV structural gene of the type III secretion system allowed nodulation and early infection to take place, whereas inactivation of the master virulence r! egulator hrpG allowed intracellular infection of nodule cells. Our findings predict that natural selection of adaptive changes in the legume environment following horizontal transfer has been a major driving force in rhizobia evolution and diversification and show the potential of experimental evolution to decipher the mechanisms leading to symbiosis. - Coherence Potentials: Loss-Less, All-or-None Network Events in the Cortex
Thiagarajan TC Lebedev MA Nicolelis MA Plenz D - PLoS Biol 8(1):e1000278 (2010)
Transient associations among neurons are thought to underlie memory and behavior. However, little is known about how such associations occur or how they can be identified. Here we recorded ongoing local field potential (LFP) activity at multiple sites within the cortex of awake monkeys and organotypic cultures of cortex. We show that when the composite activity of a local neuronal group exceeds a threshold, its activity pattern, as reflected in the LFP, occurs without distortion at other cortex sites via fast synaptic transmission. These large-amplitude LFPs, which we call coherence potentials, extend up to hundreds of milliseconds and mark periods of loss-less spread of temporal and amplitude information much like action potentials at the single-cell level. However, coherence potentials have an additional degree of freedom in the diversity of their waveforms, which provides a high-dimensional parameter for encoding information and allows identification of particular a! ssociations. Such nonlinear behavior is analogous to the spread of ideas and behaviors in social networks. - Modulation of Heat Shock Transcription Factor 1 as a Therapeutic Target for Small Molecule Intervention in Neurodegenerative Disease
- PLoS Biol 8(1):e1000291 (2010)
Neurodegenerative diseases such as Huntington disease are devastating disorders with no therapeutic approaches to ameliorate the underlying protein misfolding defect inherent to poly-glutamine (polyQ) proteins. Given the mounting evidence that elevated levels of protein chaperones suppress polyQ protein misfolding, the master regulator of protein chaperone gene transcription, HSF1, is an attractive target for small molecule intervention. We describe a humanized yeast-based high-throughput screen to identify small molecule activators of human HSF1. This screen is insensitive to previously characterized activators of the heat shock response that have undesirable proteotoxic activity or that inhibit Hsp90, the central chaperone for cellular signaling and proliferation. A molecule identified in this screen, HSF1A, is structurally distinct from other characterized small molecule human HSF1 activators, activates HSF1 in mammalian and fly cells, elevates protein chaperone exp! ression, ameliorates protein misfolding and cell death in polyQ-expressing neuronal precursor cells and protects against cytotoxicity in a fly model of polyQ-mediated neurodegeneration. In addition, we show that HSF1A interacts with components of the TRiC/CCT complex, suggesting a potentially novel regulatory role for this complex in modulating HSF1 activity. These studies describe a novel approach for the identification of new classes of pharmacological interventions for protein misfolding that underlies devastating neurodegenerative disease. - Global Regulator SATB1 Recruits β-Catenin and Regulates TH2 Differentiation in Wnt-Dependent Manner
- PLoS Biol 8(1):e1000296 (2010)
In vertebrates, the conserved Wnt signalling cascade promotes the stabilization and nuclear accumulation of β-catenin, which then associates with the lymphoid enhancer factor/T cell factor proteins (LEF/TCFs) to activate target genes. Wnt/β -catenin signalling is essential for T cell development and differentiation. Here we show that special AT-rich binding protein 1 (SATB1), the T lineage-enriched chromatin organizer and global regulator, interacts with β-catenin and recruits it to SATB1's genomic binding sites. Gene expression profiling revealed that the genes repressed by SATB1 are upregulated upon Wnt signalling. Competition between SATB1 and TCF affects the transcription of TCF-regulated genes upon β-catenin signalling. GATA-3 is a T helper type 2 (TH2) specific transcription factor that regulates production of TH2 cytokines and functions as TH2 lineage determinant. SATB1 positively regulated GATA-3 and siRNA-mediated knockdown of SATB1 downregulated GATA-3 ex! pression in differentiating human CD4+ T cells, suggesting that SATB1 influences TH2 lineage commitment by reprogramming gene expression. In the presence of Dickkopf 1 (Dkk1), an inhibitor of Wnt signalling, GATA-3 is downregulated and the expression of signature TH2 cytokines such as IL-4, IL-10, and IL-13 is reduced, indicating that Wnt signalling is essential for TH2 differentiation. Knockdown of β-catenin also produced similar results, confirming the role of Wnt/β-catenin signalling in TH2 differentiation. Furthermore, chromatin immunoprecipitation analysis revealed that SATB1 recruits β-catenin and p300 acetyltransferase on GATA-3 promoter in differentiating TH2 cells in a Wnt-dependent manner. SATB1 coordinates TH2 lineage commitment by reprogramming gene expression. The SATB1:β-catenin complex activates a number of SATB1 regulated genes, and hence this study has potential to find novel Wnt responsive genes. These results demonstrate that SATB1 orchestrates TH2 li! neage commitment by mediating Wnt/β-catenin signalling. This ! report identifies a new global transcription factor involved in β-catenin signalling that may play a major role in dictating the functional outcomes of this signalling pathway during development, differentiation, and tumorigenesis. - PINK1 Is Selectively Stabilized on Impaired Mitochondria to Activate Parkin
- PLoS Biol 8(1):e1000298 (2010)
Loss-of-function mutations in PINK1 and Parkin cause parkinsonism in humans and mitochondrial dysfunction in model organisms. Parkin is selectively recruited from the cytosol to damaged mitochondria to trigger their autophagy. How Parkin recognizes damaged mitochondria, however, is unknown. Here, we show that expression of PINK1 on individual mitochondria is regulated by voltage-dependent proteolysis to maintain low levels of PINK1 on healthy, polarized mitochondria, while facilitating the rapid accumulation of PINK1 on mitochondria that sustain damage. PINK1 accumulation on mitochondria is both necessary and sufficient for Parkin recruitment to mitochondria, and disease-causing mutations in PINK1 and Parkin disrupt Parkin recruitment and Parkin-induced mitophagy at distinct steps. These findings provide a biochemical explanation for the genetic epistasis between PINK1 and Parkin in Drosophila melanogaster. In addition, they support a novel model for the negative selec! tion of damaged mitochondria, in which PINK1 signals mitochondrial dysfunction to Parkin, and Parkin promotes their elimination. - Neuron Specific Rab4 Effector GRASP-1 Coordinates Membrane Specialization and Maturation of Recycling Endosomes
- PLoS Biol 8(1):e1000283 (2010)
The endosomal pathway in neuronal dendrites is essential for membrane receptor trafficking and proper synaptic function and plasticity. However, the molecular mechanisms that organize specific endocytic trafficking routes are poorly understood. Here, we identify GRIP-associated protein-1 (GRASP-1) as a neuron-specific effector of Rab4 and key component of the molecular machinery that coordinates recycling endosome maturation in dendrites. We show that GRASP-1 is necessary for AMPA receptor recycling, maintenance of spine morphology, and synaptic plasticity. At the molecular level, GRASP-1 segregates Rab4 from EEA1/Neep21/Rab5-positive early endosomal membranes and coordinates the coupling to Rab11-labelled recycling endosomes by interacting with the endosomal SNARE syntaxin 13. We propose that GRASP-1 connects early and late recycling endosomal compartments by forming a molecular bridge between Rab-specific membrane domains and the endosomal SNARE machinery. The data u! ncover a new mechanism to achieve specificity and directionality in neuronal membrane receptor trafficking. - The Compartmentalized Bacteria of the Planctomycetes-Verrucomicrobia-Chlamydiae Superphylum Have Membrane Coat-Like Proteins
Santarella-Mellwig R Franke J Jaedicke A Gorjanacz M Bauer U Budd A Mattaj IW Devos DP - PLoS Biol 8(1):e1000281 (2010)
The development of the endomembrane system was a major step in eukaryotic evolution. Membrane coats, which exhibit a unique arrangement of β-propeller and α-helical repeat domains, play key roles in shaping eukaryotic membranes. Such proteins are likely to have been present in the ancestral eukaryote but cannot be detected in prokaryotes using sequence-only searches. We have used a structure-based detection protocol to search all proteomes for proteins with this domain architecture. Apart from the eukaryotes, we identified this protein architecture only in the Planctomycetes-Verrucomicrobia-Chlamydiae (PVC) bacterial superphylum, many members of which share a compartmentalized cell plan. We determined that one such protein is partly localized at the membranes of vesicles formed inside the cells in the planctomycete Gemmata obscuriglobus. Our results demonstrate similarities between bacterial and eukaryotic compartmentalization machinery, suggesting that the bacterial! PVC superphylum contributed significantly to eukaryogenesis. - A Rho Scaffold Integrates the Secretory System with Feedback Mechanisms in Regulation of Auxin Distribution
- PLoS Biol 8(1):e1000282 (2010)
Development in multicellular organisms depends on the ability of individual cells to coordinate their behavior by means of small signaling molecules to form correctly patterned tissues. In plants, a unique mechanism of directional transport of the signaling molecule auxin between cells connects cell polarity and tissue patterning and thus is required for many aspects of plant development. Direction of auxin flow is determined by polar subcellular localization of PIN auxin efflux transporters. Dynamic PIN polar localization results from the constitutive endocytic cycling to and from the plasma membrane, but it is not well understood how this mechanism connects to regulators of cell polarity. The Rho family small GTPases ROPs/RACs are master regulators of cell polarity, however their role in regulating polar protein trafficking and polar auxin transport has not been established. Here, by analysis of mutants and transgenic plants, we show that the ROP interactor and polar! ity regulator scaffold protein ICR1 is required for recruitment of PIN proteins to the polar domains at the plasma membrane. icr1 mutant embryos and plants display an a array of severe developmental aberrations that are caused by compromised differential auxin distribution. ICR1 functions at the plasma membrane where it is required for exocytosis but does not recycle together with PINs. ICR1 expression is quickly induced by auxin but is suppressed at the positions of stable auxin maxima in the hypophysis and later in the embryonic and mature root meristems. Our results imply that ICR1 is part of an auxin regulated positive feedback loop realized by a unique integration of auxin-dependent transcriptional regulation into ROP-mediated modulation of cell polarity. Thus, ICR1 forms an auxin-modulated link between cell polarity, exocytosis, and auxin transport-dependent tissue patterning. - Origin of Irreversibility of Cell Cycle Start in Budding Yeast
Charvin G Oikonomou C Siggia ED Cross FR - PLoS Biol 8(1):e1000284 (2010)
Budding yeast cells irreversibly commit to a new division cycle at a regulatory transition called Start. This essential decision-making step involves the activation of the SBF/MBF transcription factors. SBF/MBF promote expression of the G1 cyclins encoded by CLN1 and CLN2. Cln1,2 can activate their own expression by inactivating the Whi5 repressor of SBF/MBF. The resulting transcriptional positive feedback provides an appealing, but as yet unproven, candidate for generating irreversibility of Start. Here, we investigate the logic of the Start regulatory module by quantitative single-cell time-lapse microscopy, using strains in which expression of key regulators is efficiently controlled by changes of inducers in a microfluidic chamber. We show that Start activation is ultrasensitive to G1 cyclin. In the absence of CLN1,2-dependent positive feedback, we observe that Start transit is reversible, due to reactivation of the Whi5 transcriptional repressor. Introduction of t! he positive feedback loop makes Whi5 inactivation and Start activation irreversible, which therefore guarantees unidirectional entry into S phase. A simple mathematical model to describe G1 cyclin turn on at Start, entirely constrained by empirically measured parameters, shows that the experimentally measured ultrasensitivity and transcriptional positive feedback are necessary and sufficient dynamical characteristics to make the Start transition a bistable and irreversible switch. Our study thus demonstrates that Start irreversibility is a property that arises from the architecture of the system (Whi5/SBF/Cln2 loop), rather than the consequence of the regulation of a single component (e.g., irreversible protein degradation). - CDC5 Inhibits the Hyperphosphorylation of the Checkpoint Kinase Rad53, Leading to Checkpoint Adaptation
- PLoS Biol 8(1):e1000286 (2010)
The Saccharomyces cerevisiae polo-like kinase Cdc5 promotes adaptation to the DNA damage checkpoint, in addition to its numerous roles in mitotic progression. The process of adaptation occurs when cells are presented with persistent or irreparable DNA damage and escape the cell-cycle arrest imposed by the DNA damage checkpoint. However, the precise mechanism of adaptation remains unknown. We report here that CDC5 is dose-dependent for adaptation and that its overexpression promotes faster adaptation, indicating that high levels of Cdc5 modulate the ability of the checkpoint to inhibit the downstream cell-cycle machinery. To pinpoint the step in the checkpoint pathway at which Cdc5 acts, we overexpressed CDC5 from the GAL1 promoter in damaged cells and examined key steps in checkpoint activation individually. Cdc5 overproduction appeared to have little effect on the early steps leading to Rad53 activation. The checkpoint sensors, Ddc1 (a member of the 9-1-1 complex) and! Ddc2 (a member of the Ddc2/Mec1 complex), properly localized to damage sites. Mec1 appeared to be active, since the Rad9 adaptor retained its Mec1 phosphorylation. Moreover, the damage-induced interaction between phosphorylated Rad9 and Rad53 remained intact. In contrast, Rad53 hyperphosphorylation was significantly reduced, consistent with the observation that cell-cycle arrest is lost during adaptation. Thus, we conclude Cdc5 acts to attenuate the DNA damage checkpoint through loss of Rad53 hyperphosphorylation to allow cells to adapt to DNA damage. Polo-like kinase homologs have been shown to inhibit the ability of Claspin to facilitate the activation of downstream checkpoint kinases, suggesting that this function is conserved in vertebrates. - A Mitotic Phosphorylation Feedback Network Connects Cdk1, Plk1, 53BP1, and Chk2 to Inactivate the G2/M DNA Damage Checkpoint
- PLoS Biol 8(1):e1000287 (2010)
DNA damage checkpoints arrest cell cycle progression to facilitate DNA repair. The ability to survive genotoxic insults depends not only on the initiation of cell cycle checkpoints but also on checkpoint maintenance. While activation of DNA damage checkpoints has been studied extensively, molecular mechanisms involved in sustaining and ultimately inactivating cell cycle checkpoints are largely unknown. Here, we explored feedback mechanisms that control the maintenance and termination of checkpoint function by computationally identifying an evolutionary conserved mitotic phosphorylation network within the DNA damage response. We demonstrate that the non-enzymatic checkpoint adaptor protein 53BP1 is an in vivo target of the cell cycle kinases Cyclin-dependent kinase-1 and Polo-like kinase-1 (Plk1). We show that Plk1 binds 53BP1 during mitosis and that this interaction is required for proper inactivation of the DNA damage checkpoint. 53BP1 mutants that are unable to bind ! Plk1 fail to restart the cell cycle after ionizing radiation-mediated cell cycle arrest. Importantly, we show that Plk1 also phosphorylates the 53BP1-binding checkpoint kinase Chk2 to inactivate its FHA domain and inhibit its kinase activity in mammalian cells. Thus, a mitotic kinase-mediated negative feedback loop regulates the ATM-Chk2 branch of the DNA damage signaling network by phosphorylating conserved sites in 53BP1 and Chk2 to inactivate checkpoint signaling and control checkpoint duration. - Poised Transcription Factories Prime Silent uPA Gene Prior to Activation
Ferrai C Xie SQ Luraghi P Munari D Ramirez F Branco MR Pombo A Crippa MP - PLoS Biol 8(1):e1000270 (2010)
The position of genes in the interphase nucleus and their association with functional landmarks correlate with active and/or silent states of expression. Gene activation can induce chromatin looping from chromosome territories (CTs) and is thought to require de novo association with transcription factories. We identify two types of factory: "poised transcription factories," containing RNA polymerase II phosphorylated on Ser5, but not Ser2, residues, which differ from "active factories" associated with phosphorylation on both residues. Using the urokinase-type plasminogen activator (uPA) gene as a model system, we find that this inducible gene is predominantly associated with poised (S5p+S2p−) factories prior to activation and localized at the CT interior. Shortly after induction, the uPA locus is found associated with active (S5p+S2p+) factories and loops out from its CT. However, the levels of gene association with poised or active transcription factories, b! efore and after activation, are independent of locus positioning relative to its CT. RNA-FISH analyses show that, after activation, the uPA gene is transcribed with the same frequency at each CT position. Unexpectedly, prior to activation, the uPA loci internal to the CT are seldom transcriptionally active, while the smaller number of uPA loci found outside their CT are transcribed as frequently as after induction. The association of inducible genes with poised transcription factories prior to activation is likely to contribute to the rapid and robust induction of gene expression in response to external stimuli, whereas gene positioning at the CT interior may be important to reinforce silencing mechanisms prior to induction. - Role of Plastid Protein Phosphatase TAP38 in LHCII Dephosphorylation and Thylakoid Electron Flow
- PLoS Biol 8(1):e1000288 (2010)
Short-term changes in illumination elicit alterations in thylakoid protein phosphorylation and reorganization of the photosynthetic machinery. Phosphorylation of LHCII, the light-harvesting complex of photosystem II, facilitates its relocation to photosystem I and permits excitation energy redistribution between the photosystems (state transitions). The protein kinase STN7 is required for LHCII phosphorylation and state transitions in the flowering plant Arabidopsis thaliana. LHCII phosphorylation is reversible, but extensive efforts to identify the protein phosphatase(s) that dephosphorylate LHCII have been unsuccessful. Here, we show that the thylakoid-associated phosphatase TAP38 is required for LHCII dephosphorylation and for the transition from state 2 to state 1 in A. thaliana. In tap38 mutants, thylakoid electron flow is enhanced, resulting in more rapid growth under constant low-light regimes. TAP38 gene overexpression markedly decreases LHCII phosphorylation a! nd inhibits state 1→2 transition, thus mimicking the stn7 phenotype. Furthermore, the recombinant TAP38 protein is able, in an in vitro assay, to directly dephosphorylate LHCII. The dependence of LHCII dephosphorylation upon TAP38 dosage, together with the in vitro TAP38-mediated dephosphorylation of LHCII, suggests that TAP38 directly acts on LHCII. Although reversible phosphorylation of LHCII and state transitions are crucial for plant fitness under natural light conditions, LHCII hyperphosphorylation associated with an arrest of photosynthesis in state 2 due to inactivation of TAP38 improves photosynthetic performance and plant growth under state 2-favoring light conditions. - 2-D Structure of the A Region of Xist RNA and Its Implication for PRC2 Association
Maenner S Blaud M Fouillen L Savoye A Marchand V Dubois A Sanglier-Cianférani S Van Dorsselaer A Clerc P Avner P Visvikis A Branlant C - PLoS Biol 8(1):e1000276 (2010)
In placental mammals, inactivation of one of the X chromosomes in female cells ensures sex chromosome dosage compensation. The 17 kb non-coding Xist RNA is crucial to this process and accumulates on the future inactive X chromosome. The most conserved Xist RNA region, the A region, contains eight or nine repeats separated by U-rich spacers. It is implicated in the recruitment of late inactivated X genes to the silencing compartment and likely in the recruitment of complex PRC2. Little is known about the structure of the A region and more generally about Xist RNA structure. Knowledge of its structure is restricted to an NMR study of a single A repeat element. Our study is the first experimental analysis of the structure of the entire A region in solution. By the use of chemical and enzymatic probes and FRET experiments, using oligonucleotides carrying fluorescent dyes, we resolved problems linked to sequence redundancies and established a 2-D structure for the A region ! that contains two long stem-loop structures each including four repeats. Interactions formed between repeats and between repeats and spacers stabilize these structures. Conservation of the spacer terminal sequences allows formation of such structures in all sequenced Xist RNAs. By combination of RNP affinity chromatography, immunoprecipitation assays, mass spectrometry, and Western blot analysis, we demonstrate that the A region can associate with components of the PRC2 complex in mouse ES cell nuclear extracts. Whilst a single four-repeat motif is able to associate with components of this complex, recruitment of Suz12 is clearly more efficient when the entire A region is present. Our data with their emphasis on the importance of inter-repeat pairing change fundamentally our conception of the 2-D structure of the A region of Xist RNA and support its possible implication in recruitment of the PRC2 complex.
No comments:
Post a Comment