Monday, December 21, 2009

Hot off the presses! Dec 01 PLoS Biol

The Dec 01 issue of the PLoS Biol is now up on Pubget (About PLoS Biol): if you're at a subscribing institution, just click the link in the latest link at the home page. (Note you'll only be able to get all the PDFs in the issue if your institution subscribes to Pubget.)

Latest Articles Include:

  • An Acetylcholine Receptor Keeps Muscles in Balance
    - PLoS Biol 7(12):e1000268 (2009)
  • Amelogenin: a Protein to Smile About
    - PLoS Biol 7(12):e1000263 (2009)
  • Surviving Salt: How Do Extremophiles Do It?
    - PLoS Biol 7(12):e1000258 (2009)
  • Visual Tuning May Boost African Cichlid Diversity
    - PLoS Biol 7(12):e1000267 (2009)
  • On the "Duel" Nature of History: Revisiting Contingency versus Determinism
    - PLoS Biol 7(12):e1000259 (2009)
  • Lawrence B. Slobodkin (1928–2009): Integrating Theory, Models, and Experiments in Ecology
    - PLoS Biol 7(12):e1000261 (2009)
  • Finding the Right Plugin: Mosquitoes Have the Answer
    - PLoS Biol 7(12):e1000273 (2009)
  • Reappraising Sexual Coevolution and the Sex Roles
    Bonduriansky R - PLoS Biol 7(12):e1000255 (2009)
  • "Deconstructing" Scientific Research: A Practical and Scalable Pedagogical Tool to Provide Evidence-Based Science Instruction
    - PLoS Biol 7(12):e1000264 (2009)
  • Transglutaminase-Mediated Semen Coagulation Controls Sperm Storage in the Malaria Mosquito
    - PLoS Biol 7(12):e1000272 (2009)
    Insect seminal fluid proteins are powerful modulators of many aspects of female physiology and behaviour including longevity, egg production, sperm storage, and remating. The crucial role of these proteins in reproduction makes them promising targets for developing tools aimed at reducing the population sizes of vectors of disease. In the malaria mosquito Anopheles gambiae, seminal secretions produced by the male accessory glands (MAGs) are transferred to females in the form of a coagulated mass called the mating plug. The potential of seminal fluid proteins as tools for mosquito control demands that we improve our limited understanding of the composition and function of the plug. Here, we show that the plug is a key determinant of An. gambiae reproductive success. We uncover the composition of the plug and demonstrate it is formed through the cross-linking of seminal proteins mediated by a MAG-specific transglutaminase (TGase), a mechanism remarkably similar to mammal! ian semen coagulation. Interfering with TGase expression in males inhibits plug formation and transfer, and prevents females from storing sperm with obvious consequences for fertility. Moreover, we show that the MAG-specific TGase is restricted to the anopheline lineage, where it functions to promote sperm storage rather than as a mechanical barrier to re-insemination. Taken together, these data represent a major advance in our understanding of the factors shaping Anopheles reproductive biology.
  • A Cost of Sexual Attractiveness to High-Fitness Females
    Long TA Pischedda A Stewart AD Rice WR - PLoS Biol 7(12):e1000254 (2009)
    Adaptive mate choice by females is an important component of sexual selection in many species. The evolutionary consequences of male mate preferences, however, have received relatively little study, especially in the context of sexual conflict, where males often harm their mates. Here, we describe a new and counterintuitive cost of sexual selection in species with both male mate preference and sexual conflict via antagonistic male persistence: male mate choice for high-fecundity females leads to a diminished rate of adaptive evolution by reducing the advantage to females of expressing beneficial genetic variation. We then use a Drosophila melanogaster model system to experimentally test the key prediction of this theoretical cost: that antagonistic male persistence is directed toward, and harms, intrinsically higher-fitness females more than it does intrinsically lower-fitness females. This asymmetry in male persistence causes the tails of the population's fitness dist! ribution to regress towards the mean, thereby reducing the efficacy of natural selection. We conclude that adaptive male mate choice can lead to an important, yet unappreciated, cost of sex and sexual selection.
  • The Eyes Have It: Regulatory and Structural Changes Both Underlie Cichlid Visual Pigment Diversity
    - PLoS Biol 7(12):e1000266 (2009)
    A major goal of evolutionary biology is to unravel the molecular genetic mechanisms that underlie functional diversification and adaptation. We investigated how changes in gene regulation and coding sequence contribute to sensory diversification in two replicate radiations of cichlid fishes. In the clear waters of Lake Malawi, differential opsin expression generates diverse visual systems, with sensitivities extending from the ultraviolet to the red regions of the spectrum. These sensitivities fall into three distinct clusters and are correlated with foraging habits. In the turbid waters of Lake Victoria, visual sensitivity is constrained to longer wavelengths, and opsin expression is correlated with ambient light. In addition to regulatory changes, we found that the opsins coding for the shortest- and longest-wavelength visual pigments have elevated numbers of potentially functional substitutions. Thus, we present a model of sensory evolution in which both molecular g! enetic mechanisms work in concert. Changes in gene expression generate large shifts in visual pigment sensitivity across the collective opsin spectral range, but changes in coding sequence appear to fine-tune visual pigment sensitivity at the short- and long-wavelength ends of this range, where differential opsin expression can no longer extend visual pigment sensitivity.
  • ZBED6, a Novel Transcription Factor Derived from a Domesticated DNA Transposon Regulates IGF2 Expression and Muscle Growth
    Markljung E Jiang L Jaffe JD Mikkelsen TS Wallerman O Larhammar M Zhang X Wang L Saenz-Vash V Gnirke A Lindroth AM Barrés R Yan J Strömberg S De S Pontén F Lander ES Carr SA Zierath JR Kullander K Wadelius C Lindblad-Toh K Andersson G Hjälm G Andersson L - PLoS Biol 7(12):e1000256 (2009)
    A single nucleotide substitution in intron 3 of IGF2 in pigs abrogates a binding site for a repressor and leads to a 3-fold up-regulation of IGF2 in skeletal muscle. The mutation has major effects on muscle growth, size of the heart, and fat deposition. Here, we have identified the repressor and find that the protein, named ZBED6, is previously unknown, specific for placental mammals, and derived from an exapted DNA transposon. Silencing of Zbed6 in mouse C2C12 myoblasts affected Igf2 expression, cell proliferation, wound healing, and myotube formation. Chromatin immunoprecipitation (ChIP) sequencing using C2C12 cells identified about 2,500 ZBED6 binding sites in the genome, and the deduced consensus motif gave a perfect match with the established binding site in Igf2. Genes associated with ZBED6 binding sites showed a highly significant enrichment for certain Gene Ontology classifications, including development and transcriptional regulation. The phenotypic effects in! mutant pigs and ZBED6-silenced C2C12 myoblasts, the extreme sequence conservation, its nucleolar localization, the broad tissue distribution, and the many target genes with essential biological functions suggest that ZBED6 is an important transcription factor in placental mammals, affecting development, cell proliferation, and growth.
  • Distributed Fading Memory for Stimulus Properties in the Primary Visual Cortex
    - PLoS Biol 7(12):e1000260 (2009)
    It is currently not known how distributed neuronal responses in early visual areas carry stimulus-related information. We made multielectrode recordings from cat primary visual cortex and applied methods from machine learning in order to analyze the temporal evolution of stimulus-related information in the spiking activity of large ensembles of around 100 neurons. We used sequences of up to three different visual stimuli (letters of the alphabet) presented for 100 ms and with intervals of 100 ms or larger. Most of the information about visual stimuli extractable by sophisticated methods of machine learning, i.e., support vector machines with nonlinear kernel functions, was also extractable by simple linear classification such as can be achieved by individual neurons. New stimuli did not erase information about previous stimuli. The responses to the most recent stimulus contained about equal amounts of information about both this and the preceding stimulus. This informa! tion was encoded both in the discharge rates (response amplitudes) of the ensemble of neurons and, when using short time constants for integration (e.g., 20 ms), in the precise timing of individual spikes (≤∼20 ms), and persisted for several 100 ms beyond the offset of stimuli. The results indicate that the network from which we recorded is endowed with fading memory and is capable of performing online computations utilizing information about temporally sequential stimuli. This result challenges models assuming frame-by-frame analyses of sequential inputs.
  • A Conserved CXXC Motif in CD3ε Is Critical for T Cell Development and TCR Signaling
    Wang Y Becker D Vass T White J Marrack P Kappler JW - PLoS Biol 7(12):e1000253 (2009)
    Virtually all T cell development and functions depend on its antigen receptor. The T cell receptor (TCR) is a multi-protein complex, comprised of a ligand binding module and a signal transmission module. The signal transmission module includes proteins from CD3 family (CD3ε, CD3δ, CD3γ) as well as the ζ chain protein. The CD3 proteins have a short extracellular stalk connecting their Ig-like domains to their transmembrane regions. These stalks contain a highly evolutionarily conserved CXXC motif, whose function is unknown. To understand the function of these two conserved cysteines, we generated mice that lacked endogenous CD3ε but expressed a transgenic CD3ε molecule in which these cysteines were mutated to serines. Our results show that the mutated CD3ε could incorporate into the TCR complex and rescue surface TCR expression in CD3ε null mice. In the CD3ε mutant mice, all stages of T cell development and activation that are TCR-dependent were impaired, but n! ot eliminated, including activation of mature naïve T cells with the MHCII presented superantigen, staphylococcal enterotoxin B, or with a strong TCR cross-linking antibody specific for either TCR-Cβ or CD3ε. These results argue against a simple aggregation model for TCR signaling and suggest that the stalks of the CD3 proteins may be critical in transmitting part of the activation signal directly through the membrane.
  • A Neuronal Acetylcholine Receptor Regulates the Balance of Muscle Excitation and Inhibition in Caenorhabditis elegans
    - PLoS Biol 7(12):e1000265 (2009)
    In the nematode Caenorhabditis elegans, cholinergic motor neurons stimulate muscle contraction as well as activate GABAergic motor neurons that inhibit contraction of the contralateral muscles. Here, we describe the composition of an ionotropic acetylcholine receptor that is required to maintain excitation of the cholinergic motor neurons. We identified a gain-of-function mutation that leads to spontaneous muscle convulsions. The mutation is in the pore domain of the ACR-2 acetylcholine receptor subunit and is identical to a hyperactivating mutation in the muscle receptor of patients with myasthenia gravis. Screens for suppressors of the convulsion phenotype led to the identification of other receptor subunits. Cell-specific rescue experiments indicate that these subunits function in the cholinergic motor neurons. Expression of these subunits in Xenopus oocytes demonstrates that the functional receptor is comprised of three α-subunits, UNC-38, UNC-63 and ACR-12, and t! wo non–α-subunits, ACR-2 and ACR-3. Although this receptor exhibits a partially overlapping subunit composition with the C. elegans muscle acetylcholine receptor, it shows distinct pharmacology. Recordings from intact animals demonstrate that loss-of-function mutations in acr-2 reduce the excitability of the cholinergic motor neurons. By contrast, the acr-2(gf) mutation leads to a hyperactivation of cholinergic motor neurons and an inactivation of downstream GABAergic motor neurons in a calcium dependent manner. Presumably, this imbalance between excitatory and inhibitory input into muscles leads to convulsions. These data indicate that the ACR-2 receptor is important for the coordinated excitation and inhibition of body muscles underlying sinusoidal movement.
  • SUMO Modification Regulates BLM and RAD51 Interaction at Damaged Replication Forks
    Ouyang KJ Woo LL Zhu J Huo D Matunis MJ Ellis NA - PLoS Biol 7(12):e1000252 (2009)
    The gene mutated in Bloom's syndrome, BLM, is important in the repair of damaged replication forks, and it has both pro- and anti-recombinogenic roles in homologous recombination (HR). At damaged forks, BLM interacts with RAD51 recombinase, the essential enzyme in HR that catalyzes homology-dependent strand invasion. We have previously shown that defects in BLM modification by the small ubiquitin-related modifier (SUMO) cause increased γ-H2AX foci. Because the increased γ-H2AX could result from defective repair of spontaneous DNA damage, we hypothesized that SUMO modification regulates BLM's function in HR repair at damaged forks. To test this hypothesis, we treated cells that stably expressed a normal BLM (BLM+) or a SUMO-mutant BLM (SM-BLM) with hydroxyurea (HU) and examined the effects of stalled replication forks on RAD51 and its DNA repair functions. HU treatment generated excess γ-H2AX in SM-BLM compared to BLM+ cells, consistent with a defect in replication-f! ork repair. SM-BLM cells accumulated increased numbers of DNA breaks and were hypersensitive to DNA damage. Importantly, HU treatment failed to induce sister-chromatid exchanges in SM-BLM cells compared to BLM+ cells, indicating a specific defect in HR repair and suggesting that RAD51 function could be compromised. Consistent with this hypothesis, RAD51 localization to HU-induced repair foci was impaired in SM-BLM cells. These data suggested that RAD51 might interact noncovalently with SUMO. We found that in vitro RAD51 interacts noncovalently with SUMO and that it interacts more efficiently with SUMO-modified BLM compared to unmodified BLM. These data suggest that SUMOylation controls the switch between BLM's pro- and anti-recombinogenic roles in HR. In the absence of BLM SUMOylation, BLM perturbs RAD51 localization at damaged replication forks and inhibits fork repair by HR. Conversely, BLM SUMOylation relieves its inhibitory effects on HR, and it promotes RAD51 function.
  • Elongated Polyproline Motifs Facilitate Enamel Evolution through Matrix Subunit Compaction
    - PLoS Biol 7(12):e1000262 (2009)
    Vertebrate body designs rely on hydroxyapatite as the principal mineral component of relatively light-weight, articulated endoskeletons and sophisticated tooth-bearing jaws, facilitating rapid movement and efficient predation. Biological mineralization and skeletal growth are frequently accomplished through proteins containing polyproline repeat elements. Through their well-defined yet mobile and flexible structure polyproline-rich proteins control mineral shape and contribute many other biological functions including Alzheimer's amyloid aggregation and prolamine plant storage. In the present study we have hypothesized that polyproline repeat proteins exert their control over biological events such as mineral growth, plaque aggregation, or viscous adhesion by altering the length of their central repeat domain, resulting in dramatic changes in supramolecular assembly dimensions. In order to test our hypothesis, we have used the vertebrate mineralization protein amelogen! in as an exemplar and determined the biological effect of the four-fold increased polyproline tandem repeat length in the amphibian/mammalian transition. To study the effect of polyproline repeat length on matrix assembly, protein structure, and apatite crystal growth, we have measured supramolecular assembly dimensions in various vertebrates using atomic force microscopy, tested the effect of protein assemblies on crystal growth by electron microscopy, generated a transgenic mouse model to examine the effect of an abbreviated polyproline sequence on crystal growth, and determined the structure of polyproline repeat elements using 3D NMR. Our study shows that an increase in PXX/PXQ tandem repeat motif length results (i) in a compaction of protein matrix subunit dimensions, (ii) reduced conformational variability, (iii) an increase in polyproline II helices, and (iv) promotion of apatite crystal length. Together, these findings establish a direct relationship between polypro! line tandem repeat fragment assemblies and the evolution and t! he design of vertebrate mineralized tissue microstructures. Our findings reveal that in the greater context of chordate evolution, the biological control of apatite growth by polyproline-based matrix assemblies provides a molecular basis for the evolution of the vertebrate body plan.
  • Structural Basis for the Aminoacid Composition of Proteins from Halophilic Archea
    Tadeo X López-Méndez B Trigueros T Laín A Castaño D Millet O - PLoS Biol 7(12):e1000257 (2009)
    Proteins from halophilic organisms, which live in extreme saline conditions, have evolved to remain folded at very high ionic strengths. The surfaces of halophilic proteins show a biased amino acid composition with a high prevalence of aspartic and glutamic acids, a low frequency of lysine, and a high occurrence of amino acids with a low hydrophobic character. Using extensive mutational studies on the protein surfaces, we show that it is possible to decrease the salt dependence of a typical halophilic protein to the level of a mesophilic form and engineer a protein from a mesophilic organism into an obligate halophilic form. NMR studies demonstrate complete preservation of the three-dimensional structure of extreme mutants and confirm that salt dependency is conferred exclusively by surface residues. In spite of the statistically established fact that most halophilic proteins are strongly acidic, analysis of a very large number of mutants showed that the effect of salt! on protein stability is largely independent of the total protein charge. Conversely, we quantitatively demonstrate that halophilicity is directly related to a decrease in the accessible surface area.

No comments: