Latest Articles Include:
- The Curious Case of Bivalent Marks
- Dev Cell 17(3):301-303 (2009)
Bivalently marked chromatin, containing both histone H3 lysine 4 (H3K4) and H3K27 trimethylation, is a hallmark of developmentally regulated paused promoters in mammalian embryonic stem cells. In this issue of Developmental Cell, Akkers et al. report that Xenopus tropicalis embryos transition through early development without the requirement for bivalently marked promoters. - Shugoshin and PP2A: Collaborating to Keep Chromosomes Connected
- Dev Cell 17(3):303-305 (2009)
Timely release of sister chromatid cohesion is essential for accurate chromosome segregation during cell division. Shugoshin forms a complex with the phosphatase PP2A that has been proposed to dephosphorylate cohesin proteins to prevent premature loss of centromeric cohesion. A recent study in Molecular Cell by Xu et al. presents the structure of Shugoshin bound to PP2A and provides evidence that this interaction is required for cohesion protection. - Orchestrating Twosome and Foursome Chromosome Parties
- Dev Cell 17(3):305-307 (2009)
The conserved centromere protein C (CENP-C) is indispensable for kinetochore function. Yet its mechanism of action has remained elusive. In this issue of Developmental Cell, Tanaka et al. report that the fission yeast homolog, Cnp3, acts as a linker protein that fulfills a variety of different roles in the bi- and mono-orientation of chromosomes during mitosis and meiosis I. - Mechanisms of Cellular Protrusions Branch Out
- Dev Cell 17(3):307-309 (2009)
F-BAR domains bind curved membranes and induce membrane invagination. In a recent Cell paper, Guerrier et al. describe an "inverse" F-BAR family member that induces outward curvature and filopodia in migrating neurons. These findings suggest that F-BAR domains are functionally diverse and regulate different types of membrane morphology. - Actin Dynamics at the Leading Edge: From Simple Machinery to Complex Networks
- Dev Cell 17(3):310-322 (2009)
Cell migration is an essential feature of eukaryotic life, required for processes ranging from feeding and phagoctyosis to development, healing, and immunity. Migration requires the actin cytoskeleton, specifically the localized polymerization of actin filaments underneath the plasma membrane. Here we summarize recent developments in actin biology that particularly affect structures at the leading edge of the cell, including the structure of actin branches, the multiple pathways that lead to cytoskeleton assembly and disassembly, and the role of blebs. Future progress depends on connecting these processes and components to the dynamic behavior of the whole cell in three dimensions. - CLIP-170-Dependent Capture of Membrane Organelles by Microtubules Initiates Minus-End Directed Transport
- Dev Cell 17(3):323-333 (2009)
Cytoplasmic microtubules (MTs) continuously grow and shorten at free plus ends. During mitosis, this dynamic behavior allows MTs to capture chromosomes to initiate their movement to the spindle poles; however, the role of MT dynamics in capturing organelles for transport in interphase cells has not been demonstrated. Here we use Xenopus melanophores to test the hypothesis that MT dynamics significantly contribute to the efficiency of MT minus-end directed transport of membrane organelles. We demonstrate that initiation of transport of membrane-bounded melanosomes (pigment granules) to the cell center involves their capture by MT plus ends, and that inhibition of MT dynamics or loss of the MT plus-end tracking protein CLIP-170 from MT tips dramatically inhibits pigment aggregation. We conclude that MT dynamics are required for the initiation of MT transport of membrane organelles in interphase cells, and that +TIPs such as CLIP-170 play an important role in this process. - CENP-C Functions as a Scaffold for Effectors with Essential Kinetochore Functions in Mitosis and Meiosis
- Dev Cell 17(3):334-343 (2009)
The conserved kinetochore protein CENP-C plays a fundamental role in chromosome segregation, but its specific functions remain elusive. We have gained insights into the role of CENP-C through identification of interacting effector proteins required for kinetochore function in fission yeast. Fta1/CENP-L is a primary effector that associates directly with Cnp3/CENP-C, and ectopic localization of Fta1 largely suppresses the mitotic kinetochore defects of cnp3Δ cells. Pcs1 functions downstream of Cnp3 to prevent merotelic attachment. In meiosis, Cnp3 further associates with and recruits Moa1, a meiosis-specific protein exclusively required for the mono-orientation of kinetochores. Genetic and biochemical analyses identified Cnp3 mutants that preserve intact mitotic kinetochore function but abolish the association with Moa1 and meiotic mono-orientation. Overall, therefore, our studies identify effectors of CENP-C in mitosis and meiosis and establish the concept that CENP-C! serves as a scaffold for the specific recruitment of essential kinetochore proteins. - Polo Kinase and Separase Regulate the Mitotic Licensing of Centriole Duplication in Human Cells
- Dev Cell 17(3):344-354 (2009)
It has been proposed that separase-dependent centriole disengagement at anaphase licenses centrosomes for duplication in the next cell cycle. Here we test whether such a mechanism exists in intact human cells. Loss of separase blocked centriole disengagement during mitotic exit and delayed assembly of new centrioles during the following S phase; however, most engagements were eventually dissolved. We identified Polo-like kinase 1 (Plk1) as a parallel activator of centriole disengagement. Timed inhibition of Plk1 mapped its critical period of action to late G2 or early M phase, i.e., prior to securin destruction and separase activation at anaphase onset. Crucially, when cells exited mitosis after downregulation of both separase and Plk1, centriole disengagement failed completely, and subsequent centriole duplication in interphase was also blocked. Our results indicate that Plk1 and separase act at different times during M phase to license centrosome duplication, reminis! cent of their roles in removing cohesin from chromosomes. - Translational Repression of Cyclin E Prevents Precocious Mitosis and Embryonic Gene Activation during C. elegans Meiosis
- Dev Cell 17(3):355-364 (2009)
Germ cells, the cells that give rise to sperm and egg, maintain the potential to recreate all cell types in a new individual. This wide developmental potential, or totipotency, is manifested in unusual tumors called teratomas, in which germ cells undergo somatic differentiation. Although recent studies have implicated RNA regulation, the mechanism that normally prevents the loss of germ cell identity remains unexplained. In C. elegans, a teratoma is induced in the absence of the conserved RNA-binding protein GLD-1. Here, we demonstrate that GLD-1 represses translation of CYE-1/cyclin E during meiotic prophase, which prevents germ cells from re-entering mitosis and inducing embryonic-like transcription. We describe a mechanism that prevents precocious mitosis in germ cells undergoing meiosis, propose that this mechanism maintains germ cell identity by delaying the onset of embryonic gene activation until after fertilization, and provide a paradigm for the possible origi! n of human teratomas. - Redefining the Progression of Lineage Segregations during Mammalian Embryogenesis by Clonal Analysis
- Dev Cell 17(3):365-376 (2009)
Clonal lineage information is fundamental in revealing cell fate choices. Using genetic single-cell labeling in utero, we investigated lineage segregations during anteroposterior axis formation in mouse. We show that while endoderm and surface ectoderm segregate during gastrulation, neural ectoderm and mesoderm share a common progenitor persisting through all stages of axis elongation. These data challenge the paradigm that the three germ layers, formed by gastrulation, constitute the primary branchpoints in differentiation of the pluripotent epiblast toward tissue-specific precursors. Bipotent neuromesodermal progenitors show self-renewing characteristics and may represent the cellular substrate coupling sustained axial elongation and coordinated differentiation of these tissues. These findings have important implications for the interpretation of the phenotypic defects of several mouse mutants and the directed differentiation of embryonic stem (ES) cells in vitro. - Local Guidance of Emerging Vessel Sprouts Requires Soluble Flt-1
- Dev Cell 17(3):377-386 (2009)
Blood vessel networks form via sprouting of endothelial cells from parent vessels. Extrinsic cues guide sprouts after they leave the initiation site, but these cues are likely insufficient to regulate initial outward movement, and many embryonic vessel networks form in the absence of a strong extrinsic gradient. We hypothesized that nascent sprouts are guided by spatial cues produced along their own vessels, and that soluble Flt-1 (sFlt-1) participates in this guidance. Analysis of developing vessels with perturbed flt-1 function revealed misguided emerging sprouts, and transgenic sFlt-1 rescued sprout guidance parameters. sflt-1 activity in endothelial cells immediately adjacent to the emerging sprout significantly improved local sprout guidance. Thus, we propose that a vessel-intrinsic system initially guides emerging sprouts away from the parent vessel, utilizing spatially regulated expression of sFlt-1 in conjunction with exogenous VEGF-A. Local sprout guidance def! ects are predicted to contribute to vessel dysmorphogenesis during perturbed development and disease. - The Vacuolar Proton Pump, V-ATPase, Is Required for Notch Signaling and Endosomal Trafficking in Drosophila
- Dev Cell 17(3):387-402 (2009)
We have identified Rabconnectin-3α and β (Rbcn-3A and B) as two regulators of Notch signaling in Drosophila. We found that, in addition to disrupting Notch signaling, mutations in Rbcn-3A and B cause defects in endocytic trafficking, where Notch and other membrane proteins accumulate in late endosomal compartments. We show that Notch is transported to the surface of mutant cells and that signaling is disrupted after the S2 cleavage. Interestingly, the yeast homolog of Rbcn-3A, Rav1, regulates the V-ATPase proton pump responsible for acidifying intracellular organelles. We found that, similarly, Rbcn-3A and B appear to regulate V-ATPase function. Moreover, we identified mutants in VhaAC39, a V-ATPase subunit, and showed that they phenocopy Rbcn-3A and Rbcn-3B mutants. Our results demonstrate that Rbcn-3 affects Notch signaling and trafficking through regulating V-ATPase function, which implies that the acidification of an intracellular compartment in the receiving cel! ls is crucial for signaling. - A Link between ER Tethering and COP-I Vesicle Uncoating
- Dev Cell 17(3):403-416 (2009)
The yeast Dsl1p vesicle tethering complex, comprising the three subunits Dsl1p, Dsl3p, and Tip20p, is stably associated with three endoplasmic reticulum-localized Q-SNAREs and is believed to play a central role in the tethering and fusion of Golgi-derived COP-I transport vesicles. Dsl1p also interacts directly with COP-I subunits. We now show that binding of Dsl1p to COP-I subunits involves binding sites identical to those involved in interactions between COP-I subunits that stabilize the COP-I coat. Cells with defects in Dsl/SNARE complex function show massive accumulation of COP-I-coated vesicles in a cluster to which COP-II coat proteins are also recruited. Our results suggest that binding of Dsl/SNARE complex to the COP-I coat complex serves two functions: to mediate vesicle tethering and to assist the uncoating process by blocking domains in COP-I that drive repolymerization and the formation of large COP-I aggregates. - Drosophila Maelstrom Ensures Proper Germline Stem Cell Lineage Differentiation by Repressing microRNA-7
- Dev Cell 17(3):417-424 (2009)
Nuage is a germline-unique perinuclear structure conserved throughout the animal kingdom. Maelstrom (Mael) is an unusual nuage component, as it is also found in the nucleus. Mael contains a High Mobility Group box, known to mediate DNA binding. We show that Mael nuclear function is required for proper differentiation in the Drosophila germline stem cell (GSC) lineage. In mael mutant testes, transit-amplifying cysts fail to differentiate into primary spermatocytes, instead breaking down into ectopic GSCs and smaller cysts, due to a depletion of Bag-of-marbles (Bam) protein. Mael regulates Bam via repression of miR-7. Mael binds the miR-7 promoter and is required for the local accumulation of HP1 and H3K9me3. miR-7 targets bam directly at its 3′UTR, and a reduction in miR-7 expression can rescue germline differentiation defects found in mael mutants by alleviating Bam repression. We propose that Mael ensures proper differentiation in the GSC lineage by repressing miR-7. - A Hierarchy of H3K4me3 and H3K27me3 Acquisition in Spatial Gene Regulation in Xenopus Embryos
- Dev Cell 17(3):425-434 (2009)
Epigenetic mechanisms set apart the active and inactive regions in the genome of multicellular organisms to produce distinct cell fates during embryogenesis. Here, we report on the epigenetic and transcriptome genome-wide maps of gastrula-stage Xenopus tropicalis embryos using massive parallel sequencing of cDNA (RNA-seq) and DNA obtained by chromatin immunoprecipitation (ChIP-seq) of histone H3 K4 and K27 trimethylation and RNA Polymerase II (RNAPII). These maps identify promoters and transcribed regions. Strikingly, genomic regions featuring opposing histone modifications are mostly transcribed, reflecting spatially regulated expression rather than bivalency as determined by expression profile analyses, sequential ChIP, and ChIP-seq on dissected embryos. Spatial differences in H3K27me3 deposition are predictive of localized gene expression. Moreover, the appearance of H3K4me3 coincides with zygotic gene activation, whereas H3K27me3 is predominantly deposited upon sub! sequent spatial restriction or repression of transcriptional regulators. These results reveal a hierarchy in the spatial control of zygotic gene activation.
No comments:
Post a Comment