Latest Articles Include:
- Staying Alive: Defensive Strategies in the BCL-2 Family Playbook
- Mol Cell 44(4):509-510 (2011)
Much debate surrounds how prosurvival members of the BCL-2 family repress opening of the BAX/BAK channel to block apoptosis; in this issue Llambi et al. (2011) identify two modes of apoptosis inhibition that exhibit surprisingly different behavior upon repeat proapoptotic challenges by BH3-only proteins. - A20: More Than One Way to Skin a Cat
- Mol Cell 44(4):511-512 (2011)
In this issue of Molecular Cell, Skaug et al. (2011) propose a polyubiquitin-dependent, noncatalytic mechanism by which the deubiquitinase A20 inhibits IκB kinase and NF-κB activation. - Mitosis Hit with an ATM Transaction Fee: Aurora B-Mediated Activation of ATM during Mitosis
- Mol Cell 44(4):513-514 (2011)
In this issue of Molecular Cell, Yang et al. (2011) demonstrate that Aurora B phosphorylates ATM, leading to its mitotic activation and ability to phosphorylate Bub1 and regulate the spindle checkpoint, thus maintaining genomic integrity. - PGC1α Confers Specificityâ"Metabolic Stress and p53-Dependent Transcription
- Mol Cell 44(4):515-516 (2011)
In this issue of Molecular Cell, Sen et al. (2011) report the involvement of PGC1α in modulating the transcriptional activity of p53 in metabolically challenged cells. They provide important insights into the mechanisms linking length and strength of the metabolic stress stimuli to the specific activation of p53 target genes. - A Unified Model of Mammalian BCL-2 Protein Family Interactions at the Mitochondria
- Mol Cell 44(4):517-531 (2011)
During apoptosis, the BCL-2 protein family controls mitochondrial outer membrane permeabilization (MOMP), but the dynamics of this regulation remain controversial. We employed chimeric proteins composed of exogenous BH3 domains inserted into a tBID backbone that can activate the proapoptotic effectors BAX and BAK to permeabilize membranes without being universally sequestered by all antiapoptotic BCL-2 proteins. We thus identified two "modes" whereby prosurvival BCL-2 proteins can block MOMP, by sequestering direct-activator BH3-only proteins ("MODE 1") or by binding active BAX and BAK ("MODE 2"). Notably, we found that MODE 1 sequestration is less efficient and more easily derepressed to promote MOMP than MODE 2. Further, MODE 2 sequestration prevents mitochondrial fusion. We provide a unified model of BCL-2 family function that helps to explain otherwise paradoxical observations relating to MOMP, apoptosis, and mitochondrial dynamics. - Fine-Tuning of Drp1/Fis1 Availability by AKAP121/Siah2 Regulates Mitochondrial Adaptation to Hypoxia
- Mol Cell 44(4):532-544 (2011)
Defining the mechanisms underlying the control of mitochondrial fusion and fission is critical to understanding cellular adaptation to diverse physiological conditions. Here we demonstrate that hypoxia induces fission of mitochondrial membranes, dependent on availability of the mitochondrial scaffolding protein AKAP121. AKAP121 controls mitochondria dynamics through PKA-dependent inhibitory phosphorylation of Drp1 and PKA-independent inhibition of Drp1-Fis1 interaction. Reduced availability of AKAP121 by the ubiquitin ligase Siah2 relieves Drp1 inhibition by PKA and increases its interaction with Fis1, resulting in mitochondrial fission. High AKAP121 levels, seen in cells lacking Siah2, attenuate fission and reduce apoptosis of cardiomyocytes under simulated ischemia. Infarct size and degree of cell death were reduced in Siah2−/− mice subjected to myocardial infarction. Inhibition of Siah2 or Drp1 in hatching C. elegans reduces their life span. Through modulating F! is1/Drp1 complex availability, our studies identify Siah2 as a key regulator of hypoxia-induced mitochondrial fission and its physiological significance in ischemic injury and nematode life span. - Peroxiredoxin II Is an Essential Antioxidant Enzyme that Prevents the Oxidative Inactivation of VEGF Receptor-2 in Vascular Endothelial Cells
- Mol Cell 44(4):545-558 (2011)
Cellular antioxidant enzymes play crucial roles in aerobic organisms by eliminating detrimental oxidants and maintaining the intracellular redox homeostasis. Therefore, the function of antioxidant enzymes is inextricably linked to the redox-dependent activities of multiple proteins and signaling pathways. Here, we report that the VEGFR2 RTK has an oxidation-sensitive cysteine residue whose reduced state is preserved specifically by peroxiredoxin II (PrxII) in vascular endothelial cells. In the absence of PrxII, the cellular H2O2 level is markedly increased and the VEGFR2 becomes inactive, no longer responding to VEGF stimulation. Such VEGFR2 inactivation is due to the formation of intramolecular disulfide linkage between Cys1199 and Cys1206 in the C-terminal tail. Interestingly, the PrxII-mediated VEGFR2 protection is achieved by association of two proteins in the caveolae. Furthermore, PrxII deficiency suppresses tumor angiogenesis in vivo. This study thus demonstrate! s a physiological function of PrxII as the residential antioxidant safeguard specific to the redox-sensitive VEGFR2. - Direct, Noncatalytic Mechanism of IKK Inhibition by A20
- Mol Cell 44(4):559-571 (2011)
A20 is a potent anti-inflammatory protein that inhibits NF-κB, and A20 dysfunction is associated with autoimmunity and B cell lymphoma. A20 harbors a deubiquitination enzyme domain and can employ multiple mechanisms to antagonize ubiquitination upstream of NEMO, a regulatory subunit of the IκB kinase complex (IKK). However, direct evidence of IKK inhibition by A20 is lacking, and the inhibitory mechanism remains poorly understood. Here we show that A20 can directly impair IKK activation without deubiquitination or impairment of ubiquitination enzymes. We find that polyubiquitin binding by A20, which is largely dependent on A20's seventh zinc-finger motif (ZnF7), induces specific binding to NEMO. Remarkably, this ubiquitin-induced recruitment of A20 to NEMO is sufficient to block IKK phosphorylation by its upstream kinase TAK1. Our results suggest a noncatalytic mechanism of IKK inhibition by A20 and a means by which polyubiquitin chains can specify a signaling ou! tcome. - Heterotypic piRNA Ping-Pong Requires Qin, a Protein with Both E3 Ligase and Tudor Domains
- Mol Cell 44(4):572-584 (2011)
piRNAs guide PIWI proteins to silence transposons in animal germ cells. Reciprocal cycles of piRNA-directed RNA cleavage—catalyzed by the PIWI proteins Aubergine (Aub) and Argonaute3 (Ago3) in Drosophila melanogaster—expand the population of antisense piRNAs in response to transposon expression, a process called the Ping-Pong cycle. Heterotypic Ping-Pong between Aub and Ago3 ensures that antisense piRNAs predominate. We show that qin, a piRNA pathway gene whose protein product contains both E3 ligase and Tudor domains, colocalizes with Aub and Ago3 in nuage, a perinuclear structure implicated in transposon silencing. In qin mutants, less Ago3 binds Aub, futile Aub:Aub homotypic Ping-Pong prevails, antisense piRNAs decrease, many families of mobile genetic elements are reactivated, and DNA damage accumulates in nurse cells and oocytes. We propose that Qin enforces heterotypic Ping-Pong between Aub and Ago3, ensuring that transposons are silenced and maintaining the ! integrity of the germline genome. - RAM/Fam103a1 Is Required for mRNA Cap Methylation
- Mol Cell 44(4):585-596 (2011)
The 7-methylguanosine cap added to the 5′ end of mRNA is required for efficient gene expression in eukaryotes. In mammals, methylation of the guanosine cap is catalyzed by RNMT (RNA guanine-7 methyltransferase), an enzyme previously thought to function as a monomer. We have identified an obligate component of the mammalian cap methyltransferase, RAM (RNMT-Activating Mini protein)/Fam103a1, a previously uncharacterized protein. RAM consists of an N-terminal RNMT-activating domain and a C-terminal RNA-binding domain. As monomers RNMT and RAM have a relatively weak affinity for RNA; however, together their RNA affinity is significantly increased. RAM is required for efficient cap methylation in vitro and in vivo, and is indirectly required to maintain mRNA expression levels, for mRNA translation and for cell viability. Our findings demonstrate that RAM is an essential component of the core gene expression machinery. - Aurora-B Mediated ATM Serine 1403 Phosphorylation Is Required for Mitotic ATM Activation and the Spindle Checkpoint
- Mol Cell 44(4):597-608 (2011)
The ATM kinase plays a critical role in the maintenance of genetic stability. ATM is activated in response to DNA damage and is essential for cell-cycle checkpoints. Here, we report that ATM is activated in mitosis in the absence of DNA damage. We demonstrate that mitotic ATM activation is dependent on the Aurora-B kinase and that Aurora-B phosphorylates ATM on serine 1403. This phosphorylation event is required for mitotic ATM activation. Further, we show that loss of ATM function results in shortened mitotic timing and a defective spindle checkpoint, and that abrogation of ATM Ser1403 phosphorylation leads to this spindle checkpoint defect. We also demonstrate that mitotically activated ATM phosphorylates Bub1, a critical kinetochore protein, on Ser314. ATM-mediated Bub1 Ser314 phosphorylation is required for Bub1 activity and is essential for the activation of the spindle checkpoint. Collectively, our data highlight mechanisms of a critical function of ATM in mitosi! s. - NSD2 Links Dimethylation of Histone H3 at Lysine 36 to Oncogenic Programming
- Mol Cell 44(4):609-620 (2011)
The histone lysine methyltransferase NSD2 (MMSET/WHSC1) is implicated in diverse diseases and commonly overexpressed in multiple myeloma due to a recurrent t(4;14) chromosomal translocation. However, the precise catalytic activity of NSD2 is obscure, preventing progress in understanding how this enzyme influences chromatin biology and myeloma pathogenesis. Here, we show that dimethylation of histone H3 at lysine 36 (H3K36me2) is the principal chromatin-regulatory activity of NSD2. Catalysis of H3K36me2 by NSD2 is sufficient for gene activation. In t(4;14)-positive myeloma cells, the normal genome-wide and gene-specific distribution of H3K36me2 is obliterated, creating a chromatin landscape that selects for a transcription profile favorable for myelomagenesis. Catalytically active NSD2 confers xenograft tumor formation upon t(4;14)-negative cells and promotes oncogenic transformation of primary cells in an H3K36me2-dependent manner. Together, our findings establish H3K3! 6me2 as the primary product generated by NSD2 and demonstrate that genomic disorganization of this canonical chromatin mark by NSD2 initiates oncogenic programming. - PGC-1α, a Key Modulator of p53, Promotes Cell Survival upon Metabolic Stress
- Mol Cell 44(4):621-634 (2011)
Metabolic stress results in p53 activation, which can trigger cell-cycle arrest, ROS clearance, or apoptosis. However, what determines the p53-mediated cell fate decision upon metabolic stress is not very well understood. We show here that PGC-1α binds to p53 and modulates its transactivation function, resulting in preferential transactivation of proarrest and metabolic target genes. Thus glucose starvation results in p53-dependent cell-cycle arrest and ROS clearance, but abrogation of PGC-1α expression results in extensive apoptosis. Additionally, prolonged starvation results in PGC-1α degradation concomitant with induction of apoptosis. We have also identified RNF2, a Polycomb group (PcG) protein, as the cognate E3 ubiquitin ligase. Starvation of mice where PGC-1α expression is abrogated results in loss of p53-mediated ROS clearance, enhanced p53-dependent apoptosis, and consequent severe liver atrophy. These findings provide key insights into the role of! PGC-1α in regulating p53-mediated cell fate decisions in response to metabolic stress. - Applied Force Provides Insight into Transcriptional Pausing and Its Modulation by Transcription Factor NusA
- Mol Cell 44(4):635-646 (2011)
Transcriptional pausing by RNA polymerase (RNAP) plays an essential role in gene regulation. Pausing is modified by various elongation factors, including prokaryotic NusA, but the mechanisms underlying pausing and NusA function remain unclear. Alternative models for pausing invoke blockade events that precede translocation (on-pathway), enzyme backtracking (off-pathway), or isomerization to a nonbacktracked, elemental pause state (off-pathway). We employed an optical trapping assay to probe the motions of individual RNAP molecules transcribing a DNA template carrying tandem repeats encoding the his pause, subjecting these enzymes to controlled forces. NusA significantly decreased the pause-free elongation rate of RNAP while increasing the probability of entry into short- and long-lifetime pauses, in a manner equivalent to exerting a ∼19 pN force opposing transcription. The effects of force and NusA on pause probabilities and lifetimes support a reaction scheme where ! nonbacktracked, elemental pauses branch off the elongation pathway from the pretranslocated state of RNAP. - Telomere Protection by TPP1/POT1 Requires Tethering to TIN2
- Mol Cell 44(4):647-659 (2011)
To prevent ATR activation, telomeres deploy the single-stranded DNA binding activity of TPP1/POT1a. POT1a blocks the binding of RPA to telomeres, suggesting that ATR is repressed through RPA exclusion. However, comparison of the DNA binding affinities and abundance of TPP1/POT1a and RPA indicates that TPP1/POT1a by itself is unlikely to exclude RPA. We therefore analyzed the central shelterin protein TIN2, which links TPP1/POT1a (and POT1b) to TRF1 and TRF2 on the double-stranded telomeric DNA. Upon TIN2 deletion, telomeres lost TPP1/POT1a, accumulated RPA, elicited an ATR signal, and showed all other phenotypes of POT1a/b deletion. TIN2 also affected the TRF2-dependent repression of ATM kinase signaling but not to TRF2-mediated inhibition of telomere fusions. Thus, while TIN2 has a minor contribution to the repression of ATM by TRF2, its major role is to stabilize TPP1/POT1a on the ss telomeric DNA, thereby allowing effective exclusion of RPA and repression of ATR sig! naling. - rRNA Pseudouridylation Defects Affect Ribosomal Ligand Binding and Translational Fidelity from Yeast to Human Cells
- Mol Cell 44(4):660-666 (2011)
How pseudouridylation (Ψ), the most common and evolutionarily conserved modification of rRNA, regulates ribosome activity is poorly understood. Medically, Ψ is important because the rRNA Ψ synthase, DKC1, is mutated in X-linked dyskeratosis congenita (X-DC) and Hoyeraal-Hreidarsson (HH) syndrome. Here, we characterize ribosomes isolated from a yeast strain in which Cbf5p, the yeast homolog of DKC1, is catalytically impaired through a D95A mutation (cbf5-D95A). Ribosomes from cbf5-D95A cells display decreased affinities for tRNA binding to the A and P sites as well as the cricket paralysis virus internal ribosome entry site (IRES), which interacts with both the P and the E sites of the ribosome. This biochemical impairment in ribosome activity manifests as decreased translational fidelity and IRES-dependent translational initiation, which are also evident in mouse and human cells deficient for DKC1 activity. These findings uncover specific roles for Ψ modification i! n ribosome-ligand interactions that are conserved in yeast, mouse, and humans. - Genomic Maps of Long Noncoding RNA Occupancy Reveal Principles of RNA-Chromatin Interactions
- Mol Cell 44(4):667-678 (2011)
Long noncoding RNAs (lncRNAs) are key regulators of chromatin state, yet the nature and sites of RNA-chromatin interaction are mostly unknown. Here we introduce Chromatin Isolation by RNA Purification (ChIRP), where tiling oligonucleotides retrieve specific lncRNAs with bound protein and DNA sequences, which are enumerated by deep sequencing. ChIRP-seq of three lncRNAs reveal that RNA occupancy sites in the genome are focal, sequence-specific, and numerous. Drosophila roX2 RNA occupies male X-linked gene bodies with increasing tendency toward the 3′ end, peaking at CES sites. Human telomerase RNA TERC occupies telomeres and Wnt pathway genes. HOTAIR lncRNA preferentially occupies a GA-rich DNA motif to nucleate broad domains of Polycomb occupancy and histone H3 lysine 27 trimethylation. HOTAIR occupancy occurs independently of EZH2, suggesting the order of RNA guidance of Polycomb occupancy. ChIRP-seq is generally applicable to illuminate the intersection of RNA and ! chromatin with newfound precision genome wide.
No comments:
Post a Comment