Latest Articles Include:
- Editorial Board and Publication Information
- J Biomech 44(13):IFC (2011)
- Direct evidence of "damage accumulation" in cement mantles surrounding femoral hip stems retrieved at autopsy: Cement damage correlates with duration of use and BMI
- J Biomech 44(13):2345-2350 (2011)
The "damage accumulation" phenomenon has not been quantitatively demonstrated in clinical cement mantles surrounding femoral hip stems. We stained transverse sections of 11 postmortem retrieved femoral hip components fixed with cement using fluorescent dye-penetrant and quantified cement damage, voids, and cement–bone interface gaps in epifluorescence and white light micrographs. Crack density (Cr.Dn), crack length-density (Cr.Ln.Dn), porosity, and cement–bone interface gap fraction (c/b-gap%) were calculated, normalized by mantle area. Multiple regression tests showed that cement damage (Cr.Ln.Dn. & Cr.Dn.) was significantly positively correlated (r2=0.98, p<0.001) with "duration of use" and body mass index ("BMI") but not cement mantle "porosity". There were significant interactions: "duration of use""BMI" was strongly predictive (p<0.005) of Cr.Dn.; and "duration of use""porosity" was predictive (p=0.04) of Cr.Ln.Dn. Stem related ! cracks accounted for approximately one fifth of Cr.Dn and one third of Cr.Ln.Dn. The mean c/b-gap% was 13.8% but it did not correlate (r2=0.01, p=0.8) with duration of use. We concluded that duration-dependent fatigue damage accumulation occurred during in vivo use. BMI strongly influenced cement crack length and the rate of new crack formation over time. Voids did not increase the rate of crack initiation but appeared to have promoted crack growth over time. Although not progressive, substantial bone resorption at the cement–bone interface appeared to be common. - Prior storage conditions and loading rate affect the in vitro fracture response of spinal segments under impact loading
- J Biomech 44(13):2351-2355 (2011)
Traumatic injuries of the spine are mostly the consequence of rapid overload e.g. impact loading. In vitro investigations on this topic usually encompass biomechanical testing using frozen/thawed specimens and employ quasi-static loading conditions. It is generally accepted that a freezing/thawing cycle does not alter mechanical properties for slow loading rates. However, this has never been investigated for high impact velocities. In order to assess the effects of freezing/thawing and the influence of different impact velocities, we loaded 27 fresh and 15 frozen/thawed cadaveric rabbit spinal segments (intervertebral disc with one third of the adjacent vertebrae) with different impact energies and velocities using a custom-made, dropped-weight loading device. Endplate fractures were assessed by micro-CT scans. Specimen dimensions (disk, bone, and total height) and vertebrae bone density (BV/TV) were compared pre- and post-trauma. Energy absorption by spinal segments w! as quantified by measuring the initial ball rebound. We found that freezing/thawing increased endplate fracture frequency and decreased the energy absorption of the segments. Higher impact velocities increased the energy absorption, while higher impact energy increased both energy absorption and fracture frequency. Two conclusions are drawn: first, under impact loading, freezing alters permanently the biomechanical response, and second, for different impact velocities, different fracture initiation mechanisms apply. Therefore, quasi-static loading of frozen/thawed spinal segments is not a valid model for traumatic endplate injuries. However, caution should be exercised in extrapolating these findings to human vertebrae until tests on larger vertebrae are performed. - Determination of mechanical properties of soft tissue scaffolds by atomic force microscopy nanoindentation
- J Biomech 44(13):2356-2361 (2011)
While the determination of mechanical properties of a hard scaffold is relatively straightforward, the mechanical testing of a soft tissue scaffold poses significant challenges due in part to its fragility. Here, we report a new approach for characterizing the stiffness and elastic modulus of a soft scaffold through atomic force microscopy (AFM) nanoindentation. Using collagen–chitosan hydrogel scaffolds as model soft tissue scaffolds, we demonstrated the feasibility of using AFM nanoindentation to determine a force curve of a soft tissue scaffold. A mathematical model was developed to ascertain the stiffness and elastic modulus of a scaffold from its force curve obtained under different conditions. The elastic modulus of a collagen–chitosan (80%/20%, v/v) scaffold is found to be 3.69 kPa. The scaffold becomes stiffer if it contains more chitosan. The elastic modulus of a scaffold composed of 70% collagen and 30% chitosan is about 11.6 kPa. Furthermore, the stiffne! ss of the scaffold is found to be altered significantly by extracellular matrix deposited from cells that are grown inside the scaffold. The elastic modulus of collagen–chitosan scaffolds increased from 10.5 kPa on day 3 to 63.4 kPa on day 10 when human foreskin fibroblast cells grew inside the scaffolds. Data acquired from these measurements will offer new insights into understanding cell fate regulation induced by physiochemical cues of tissue scaffolds. - Construction of 3D human distal femoral surface models using a 3D statistical deformable model
- J Biomech 44(13):2362-2368 (2011)
Construction of 3D geometric surface models of human knee joint is always a challenge in biomedical engineering. This study introduced an improved statistical shape model (SSM) method that only uses 2D images of a joint to predict the 3D joint surface model. The SSM was constructed using 40 distal femur models of human knees. In this paper, a series validation and parametric analysis suggested that more than 25 distal femur models are needed to construct the SSM; each distal femur should be described using at least 3000 nodes in space; and two 2D fluoroscopic images taken in 45° directions should be used for the 3D surface shape prediction. Using this SSM method, ten independent distal femurs from 10 independent living subjects were predicted using their 2D plane fluoroscopic images. The predicted models were compared to their native 3D distal femur models constructed using their 3D MR images. The results demonstrated that using two fluoroscopic images of the knee, th! e overall difference between the predicted distal femur surface and the MR image-based surface was 0.16±1.16 mm. These data indicated that the SSM method could be a powerful method for construction of 3D surface geometries of the distal femur. - Estimation of low back moments from video analysis: A validation study
- J Biomech 44(13):2369-2375 (2011)
This study aimed to develop, compare and validate two versions of a video analysis method for assessment of low back moments during occupational lifting tasks since for epidemiological studies and ergonomic practice relatively cheap and easily applicable methods to assess low back loads are needed. Ten healthy subjects participated in a protocol comprising 12 lifting conditions. Low back moments were assessed using two variants of a video analysis method and a lab-based reference method. Repeated measures ANOVAs showed no overall differences in peak moments between the two versions of the video analysis method and the reference method. However, two conditions showed a minor overestimation of one of the video analysis method moments. Standard deviations were considerable suggesting that errors in the video analysis were random. Furthermore, there was a small underestimation of dynamic components and overestimation of the static components of the moments. Intraclass corr! elations coefficients for peak moments showed high correspondence (>0.85) of the video analyses with the reference method. It is concluded that, when a sufficient number of measurements can be taken, the video analysis method for assessment of low back loads during lifting tasks provides valid estimates of low back moments in ergonomic practice and epidemiological studies for lifts up to a moderate level of asymmetry. - Initial stress in biomechanical models of atherosclerotic plaques
- J Biomech 44(13):2376-2382 (2011)
Rupture of atherosclerotic plaques is the underlying cause for the majority of acute strokes and myocardial infarctions. Rupture of the plaque occurs when the stress in the plaque exceeds the strength of the material locally. Biomechanical stress analyses are commonly based on pressurized geometries, in most cases measured by in-vivo MRI. The geometry is therefore not stress-free. The aim of this study is to identify the effect of neglecting the initial stress state on the plaque stress distribution. Fifty 2D histological sections (7 patients, 9 diseased coronary artery segments), perfusion fixed at 100 mmHg, were segmented and finite element models were created. The Backward Incremental method was applied to determine the initial stress state and the zero-pressure state. Peak plaque and cap stresses were compared with and without initial stress. The effect of initial stress on the peak stress was related to the minimum cap thickness, maximum necrotic core thickness, and necrotic core angle. When accounting for initial stress, the general relations between geometrical features and peak cap stress remain intact. However, on a patient-specific basis, accounting for initial stress has a different effect on the absolute cap stress for each plaque. Incorporating initial stress may therefore improve the accuracy of future stress based rupture risk analyses for atherosclerotic plaques. - Inter-laboratory variability in in vitro spinal segment flexibility testing
- J Biomech 44(13):2383-2387 (2011)
In vitro spine flexibility testing has been performed using a variety of laboratory-specific loading apparatuses and conditions, making test results across laboratories difficult to compare. The application of pure moments has been well established for spine flexibility testing, but to our knowledge there have been no attempts to quantify differences in range of motion (ROM) resulting from laboratory-specific loading apparatuses. Seven fresh-frozen lumbar cadaveric motion segments were tested intact at four independent laboratories. Unconstrained pure moments of 7.5 Nm were applied in each anatomic plane without an axial preload. At laboratories A and B, pure moments were applied using hydraulically actuated spinal loading fixtures with either a passive (A) or controlled (B) XY table. At laboratories C and D, pure moments were applied using a sliding (C) or fixed ring (D) cable–pulley system with a servohydraulic test frame. Three sinusoidal load-unload cycles were a! pplied at laboratories A and B while a single quasistatic cycle was applied in 1.5 Nm increments at laboratories C and D. Non-contact motion measurement systems were used to quantify ROM. In all test directions, the ROM variability among donors was greater than single-donor ROM variability among laboratories. The maximum difference in average ROM between any two laboratories was 1.5° in flexion-extension, 1.3° in lateral bending and 1.1° in axial torsion. This was the first study to quantify ROM in a single group of spinal motion segments at four independent laboratories with varying pure moment systems. These data support our hypothesis that given a well-described test method, independent laboratories can produce similar biomechanical outcomes. - Effects of stress fiber contractility on uniaxial stretch guiding mitosis orientation and stress fiber alignment
- J Biomech 44(13):2388-2394 (2011)
It has been documented that mitosis orientation (MO) is guided by stress fibers (SFs), which are perpendicular to exogenous cyclic uniaxial stretch. However, the effect of mechanical forces on MO and the mechanism of stretch-induced SFs reorientation are not well elucidated to date. In the present study, we used murine 3T3 fibroblasts as a model, to investigate the effects of uniaxial stretch on SFO and MO utilizing custom-made stretch device. We found that cyclic uniaxial stretch induced both SFs and mitosis directions orienting perpendicularly to the stretch direction. The F-actin and myosin II blockages, which resulted in disoriented SFs and mitosis directions under uniaxial stretch, suggested a high correlation between SFO and MO. Y27632 (10 μM), ML7 (50 μM, or 75 μM), and blebbistatin (50 μM, or 75 μM) treatments resulted in SFO parallel to the principle stretch direction. Upon stimulating and inhibiting the phosphorylation of myosin light chain (p-MLC), we o! bserved a monotonic proportion of SFO to the level of p-MLC. These results suggested that the level of cell contraction is crucial to the response of SFs, either perpendicular or parallel, to the external stretch. Showing the possible role of cell contractility in tuning SFO under external stretch, our experimental data are valuable to understand the predominant factor controlling SFO response to exogenous uniaxial stretch, and thus helpful for improving mechanical models. - Detection of fatigue microdamage in whole rat femora using contrast-enhanced micro-computed tomography
- J Biomech 44(13):2395-2400 (2011)
Microdamage in bone tissue is typically studied using destructive, two-dimensional histological techniques. Contrast-enhanced micro-computed tomography (micro-CT) was recently demonstrated to enable non-destructive, three-dimensional (3-D) detection of microdamage in machined cortical and trabecular bone specimens in vitro. However, the accumulation of microdamage in whole bones is influenced by variations in the magnitude and mode of loading due to the complex whole bone morphology. Therefore, the objective of this study was to detect the presence, spatial location, and accumulation of fatigue microdamage in whole rat femora in vitro using micro-CT with a BaSO4 contrast agent. Microdamage was detected and observed to accumulate at specific spatial locations within the cortex of femora loaded in cyclic three-point bending to a 5% or 10% reduction in secant modulus. The ratio of the segmented BaSO4 stain volume (SV) to the total volume (TV) of cortical bone was adopted ! as a measure of damage. The amount of microdamage measured by micro-CT (SV/TV) was significantly greater for both loaded groups compared to the control group (p<0.05), but the difference between loaded groups was not statistically significant. At least one distinct region of microdamage, as indicated by the segmented SV, was observed in 85% of loaded specimens. A specimen-specific finite element model confirmed elevated tensile principal strains localized in regions of tissue corresponding to the accumulated microdamage. These regions were not always located where one might expect a priori based upon Euler–Bernoulli beam theory, demonstrating the utility of contrast-enhanced micro-CT for non-destructive, 3-D detection of fatigue microdamage in whole bones in vitro. - The validity of stability measures: A modelling approach
- J Biomech 44(13):2401-2408 (2011)
Measures calculated from unperturbed walking patterns, such as variability measures and maximum Floquet multipliers, are often used to study the stability of walking. However, it is unknown if, and to what extent, these measures correlate to the probability of falling. We studied whether in a simple model of human walking, i.e., a passive dynamic walker, the probability of falling could be predicted from maximum Floquet multipliers, kinematic state variability, and step time variability. We used an extended version of the basic passive dynamic walker with arced feet and a hip spring. The probability of falling was manipulated by varying the foot radius and hip spring stiffness, or varying these factors while co-varying the slope to keep step length constant. The simulation data indicated that Floquet multipliers and kinematic state variability correlated inconsistently with probability of falling. Step time variability correlated well with probability of falling, but a more consistent correlation with the probability of falling was found by calculating the variability of the log transform of the step time. Our findings speak against the use of maximum Floquet multipliers and suggest instead that variability of critical variables may be a good predictor of the probability to fall. - Fluid–structure interaction study of the edge-to-edge repair technique on the mitral valve
- J Biomech 44(13):2409-2417 (2011)
The effect of functional mitral regurgitation has been investigated in an anatomically sized, fluid–structure interaction mitral valve model, where simulated correction has been performed by applying: (1) edge-to-edge repair with annuloplasty and (2) edge-to-edge repair only. Initially defined in an open unstressed/corrected configuration, fluid–structure interaction simulations of diastole have been performed in a rigid ventricular volume. Comparison of the maximum principal stresses (during diastole) in the normal and repaired models has shown that the magnitude of stress in the repaired scenarios is 200% greater. The combined edge-to-edge and annuloplasty procedure was found to spread the induced stresses across the free margin of the leaflets, whereas without annuloplasty a localised stress concentration in the region of the suture was observed. Fluid flow downstream of the corrected configurations was able to achieve the same magnitude as in the normal case, a! lthough the flow rate was impaired. The maximum flow rate was found to be reduced by 44–50% with the peak flow rate shifted from the end of the diastole in the normal case to the start in the repaired cases. - Anisotropic AAA: Computational comparison between four and two fiber family material models
- J Biomech 44(13):2418-2426 (2011)
Abdominal aortic aneurysm (AAA) is a cardiovascular disease with high incidence among elderly population. Biomechanical computational analyses can provide fundamental insights into AAA pathogenesis and clinical management, but modeling should be sufficiently accurate. Several constitutive models of the AAA wall are present in the literature, and some of them seem to well describe the experimental behavior of the aneurysmatic human aorta. In this work we compare a two (2FF) and a four (4FF) fiber families constitutive models of the AAA wall. Both these models satisfactorily fit literature data from biaxial tests on the aneurysmatic tissue. To investigate the peculiar characteristics of these models, we considered the problem of AAA inflation, and solved it by implementing the constitutive equations in a finite element code. A 20% axial stretch was imposed to the aneurysm ends, to simulate the physiological condition. Although fitted on the same dataset, the two material! models lead to considerably different outcomes. In particular, adopting a 4FF strain energy function (SEF), an increase of the circumferential stress values can be observed, while higher axial stresses are recorded for the 2FF model. These differences can be attributed to the intrinsic characteristics of the SEFs and to the effective stress field, with respect to the one experienced in biaxial experimental tests on which the fitting is based. In fact the two SEFs appear similar within the region of the stress-strain experimental data, but become different outside it, as in case of aneurysms, due to the effects of the data extrapolation process. It is suggested that experimental data should be obtained for conditions similar to those of the application for which they are intended. - On the importance of blood rheology for bulk flow in hemodynamic models of the carotid bifurcation
- J Biomech 44(13):2427-2438 (2011)
Here we present a study on the impact of assumptions on image-based hemodynamic simulations of healthy carotid bifurcations. In particular, we evaluate to which extent assumptions on blood rheology influence bulk flow features, driven by the fact that few studies have provided adequate insights into the influence of assumptions to confidently model the 4D hemodynamics within the bifurcation. The final goal is to complement, integrate and extend with a quantitative characterization of the bulk flow the description currently adopted to classify altered hemodynamics, which is based on wall shear stress (WSS). Hemodynamic simulations of two image-based carotid bifurcation geometries were carried out assuming a reference Newtonian viscosity, two non-Newtonian rheology models and Newtonian viscosities based on characteristic shear rates. WSS-based and Lagrangian-based metrics for helical flow quantification and for vorticity dynamics quantification were calculated. Our findings suggest that the assumption of Newtonian rheology: (1) could be reasonable for bulk flow metrics (differences from non-Newtonian behavior are lower than 10%); (2) influences at different levels the WSS-based indicators, depending on the bifurcation model, even if in our study it is lower than the major source of uncertainty as recognized by the literature (i.e., uncertainty on geometry reconstruction). - Development of a quantitative mechanical test of atherosclerotic plaque stability
- J Biomech 44(13):2439-2445 (2011)
Atherosclerotic plaque rupture is the main cause of myocardial infarction and stroke. Both clinical and computational studies indicate that the shoulder region, where a plaque joins the vessel wall, is rupture-prone. Previous mechanistic studies focused on mechanical properties of the fibrous cap and tensile stresses, which could lead to tearing of the cap. Based on clinical observations of "mobile floating plaques," we postulate that de-adhesion between the fibrous cap and the underlying vessel wall may also play a role in plaque failure. Thus, measuring adhesive strength of the bond between plaque and vascular wall may provide useful new insights into plaque stability. Delamination experiments, widely used in examining inter-laminar adhesive strength of biological materials, were used to measure adhesive strength of advanced plaques in apolipoprotein E-knockout (apoE-KO) mice after 8 months on Western diet. We measured adhesive strength in terms of local energy r! elease rate, , during controlled plaque delamination. As a measure of the fracture energy required to delaminate a unit area of plaque from the underlying internal elastic lamina (IEL), provides a quantitative measure of local adhesive strength of the plaque–IEL interface. The values for acquired from 16 plaques from nine apoE-KO mouse aortas formed a positively skewed distribution with a mean of 24.5 J/m2, median of 19.3 J/m2, first quartile of 10.8 J/m2, and third quartile of 34.1 J/m2. These measurements are in the lower range of values reported for soft tissues. Histological studies confirmed delamination occurred at the interface between plaque and IEL. - Development of a statistical shape model of the patellofemoral joint for investigating relationships between shape and function
- J Biomech 44(13):2446-2452 (2011)
Patellofemoral (PF)-related pathologies, including joint laxity, patellar maltracking, cartilage degradation and anterior knee pain, affect nearly 25% of the population. Researchers have investigated the influence of articular geometry on kinematics and contact mechanics in order to gain insight into the etiology of these conditions. The purpose of the current study was to create a three-dimensional statistical shape model of the PF joint and to characterize relationships between PF shape and function (kinematics and contact mechanics). A statistical shape model of the patellar and femoral articular surfaces and their relative alignment was developed from magnetic resonance images. Using 15 shape parameters, the model characterized 97% of the variation in the training set. The first three shape modes primarily described variation in size, patella alta–baja and depth of the sulcus groove. A previously verified finite element model was used to predict kinematics and co! ntact mechanics for each subject. Combining the shape and joint mechanics data, a statistical shape–function model was developed that established quantitative relations of how changes in the shape of the PF joint influence mechanics. The predictive capability of the shape–function model was evaluated by comparing statistical model and finite element predictions, resulting in kinematic root mean square errors of less than 3° and 2.5 mm. The key results of the study are dually in the implementation of a novel approach linking statistical shape and finite element models and the relationships elucidated between PF articular geometry and mechanics. - Coupled fluid–structure interaction hemodynamics in a zero-pressure state corrected arterial geometry
- J Biomech 44(13):2453-2460 (2011)
Hemodynamic conditions in large arteries are significantly affected by the interaction of the pulsatile blood flow with the distensible arterial wall. A numerical procedure for solving the fluid–structure interaction problem encountered in cardiovascular flows is presented. We consider a patient-specific carotid bifurcation geometry, obtained from 3D reconstruction of in vivo acquired tomography images, which yields a geometrical representation of the artery corresponding to its pressurized state. To recover the geometry of the artery in its zero-pressure state which is required for a fluid–structure interaction simulation we utilize inverse finite elastostatics. Time-dependent flow simulations with in vivo measured inflow volume flow rate in the 3D undeformed artery are performed through the finite element method. The coupled-momentum method for fluid–structure interaction is adopted to incorporate the influence of wall compliance in the numerical computation of! the time varying flow domain. To demonstrate the importance in recovering the zero-pressure state of the artery in hemodynamic simulations we compute the time varying flow field with compliant walls for the original and the zero-pressure state corrected geometric configurations of the carotid bifurcation. The most important resulting effects in the hemodynamic environment are evaluated. Our results show a significant change in the wall shear stress distribution and the spatiotemporal extent of the recirculation regions. - Using static preload with magnetic resonance elastography to estimate large strain viscoelastic properties of bovine liver
- J Biomech 44(13):2461-2465 (2011)
Traditional magnetic resonance elastography (MRE) applies small amplitude vibration to tissues. Thus currently MRE measures only the small deformation behaviour of tissues. MRE has the potential to estimate the strain-varying shear modulus of soft tissues, if applied at different static strains, which may allow prediction of the large-strain behaviour of tissues. This study uses MRE of bovine liver specimens under various levels of static compressive pre-strain up to 30%. Storage and loss moduli measured using MRE increased non-linearly with static compressive pre-strain, and exponential models fit well to these data to describe this relationship (R2>0.93). Based on these models, a 10% linear compression of liver would result in a 47% overestimate of the 'true' storage modulus of the uncompressed tissue. The results of this study have implications for MRE transducer design and interpretation of results from in vivo MRE studies. - Computed high concentrations of low-density lipoprotein correlate with plaque locations in human coronary arteries
- J Biomech 44(13):2466-2471 (2011)
Subendothelial accumulation of low-density lipoprotein (LDL) in arterial walls is an initiator of atherosclerotic plaque formation. We report here on the correlation between healthy state subendothelial LDL concentration distribution and sites of subsequent plaque formation in coronary arteries of patients with coronary artery disease (CAD). We acquired left (LCA) and right coronary artery (RCA) and atherosclerotic plaque geometries of 60 patients with CAD using dual-source computed tomography angiography. After virtually removing all plaques to obtain an approximation of the arteries' healthy state, we calculated LDL concentration in the artery walls as a function of local lumen-side shear stress. We found that maximum subendothelial LDL concentrations at plaque locations were, on average, 45% (RCA) and 187% (LCA) higher than the respective average subendothelial concentration. Our results demonstrate that locally elevated subendothelial LDL concentration correlates w! ith subsequent plaque formation at the same location. - Coupling plowing of cartilage explants with gene expression in models for synovial joints
- J Biomech 44(13):2472-2476 (2011)
Articular cartilage undergoes complex loading modalities generally including sliding, rolling and plowing (i.e. the compression by a condyle normally to the tissue surface under simultaneously tangential displacement, thus generating a tractional force due to tissue deformation). Although in in vivo studies it was shown that excessive plowing can lead to osteoarthritis, little quantitative experimental work on this loading modality and its mechanobiological effects is available in the literature. Therefore, a rolling/plowing explant test system has been developed to study the effect on pristine cartilage of plowing at different perpendicular forces. Cartilage strips harvested from bovine nasal septa of 12-months-old calves were subjected for 2 h to a plowing-regime with indenter normal force of 50 or 100 N and a sliding speed of 10 mm s−1. 50 N produced a tractional force of 1.2±0.3 N, whereas 100 N generated a tractional force of 8.0±1.4 N. Furthermore, quantitative-real-time polymerase chain reaction experiments showed that TIMP-1 was 2.5x up-regulated after 50 N plowing and 2x after 100 N plowing, indicating an ongoing remodeling process. The expression of collagen type-I was not affected after 50 N plowing but it was up-regulated (6.6x) after 100 N plowing, suggesting a possible progression to an injury stage of the cartilage, as previously reported in cartilage of osteoarthritic patients. We conclude that plowing as performed by our mimetic system at the chosen experimental parameters induces changes in gene expression depending on the tractional force, which, in turn, relates to the applied normal force. - Relationship between streaming potential and compressive stress in bovine intervertebral tissue
- J Biomech 44(13):2477-2481 (2011)
The intervertebral disc is formed by the nucleus pulposus (NP) and annulus fibrosus (AF), and intervertebral tissue contains a large amount of negatively charged proteoglycan. When this tissue becomes deformed, a streaming potential is induced by liquid flow with positive ions. The anisotropic property of the AF tissue is caused by the structural anisotropy of the solid phase and the liquid phase flowing into the tissue with the streaming potential. This study investigated the relationship between the streaming potential and applied stress in bovine intervertebral tissue while focusing on the anisotropy and loading location. Column-shaped specimens, 5.5 mm in diameter and 3 mm thick, were prepared from the tissue of the AF, NP and the annulus–nucleus transition region (AN). The loading direction of each specimen was oriented in the spinal axial direction, as well as in the circumferential and radial directions of the spine considering the anisotropic properties of th! e AF tissue. The streaming potential changed linearly with stress in all specimens. The linear coefficients ke of the relationship between stress and streaming potential depended on the extracted positions. These coefficients were not affected by the anisotropy of the AF tissue. In addition, these coefficients were lower in AF than in NP specimens. Except in the NP specimen, the ke values were higher under faster compression rate conditions. In cyclic compression loading the streaming potential changed linearly with compressive stress, regardless of differences in the tissue and load frequency. - Tensile properties of rat femoral bone as functions of bone volume fraction, apparent density and volumetric bone mineral density
- J Biomech 44(13):2482-2488 (2011)
Mechanical testing has been regarded as the gold standard to investigate the effects of pathologies on the structure–function properties of the skeleton. Tensile properties of cancellous and cortical bone have been reported previously; however, no relationships describing these properties for rat bone as a function of volumetric bone mineral density (ρMIN), apparent density or bone volume fraction (BV/TV) have been reported in the literature. We have shown that at macro level, compression and torsion properties of rat cortical and cancellous bone can be well described as a function of BV/TV, apparent density or ρMIN using non-destructive micro-computed tomographic imaging and mechanical testing to failure. Therefore, the aim of this study is to derive a relationship expressing the tensile properties of rat cortical bone as a function of BV/TV, apparent density or ρMIN over a range of normal and pathologic bones. We used bones from normal, ovariectomized and osteomalacic animals. All specimens underwent micro-computed tomographic imaging to assess bone morphometric and densitometric indices and uniaxial tension to failure. We obtained univariate relationships describing 74–77% of the tensile properties of rat cortical bone as a function of BV/TV, apparent density or ρMIN over a range of density and common skeletal pathologies. The relationships reported in this study can be used in the structural rigidity to provide a non-invasive method to assess the tensile behavior of bones affected by pathology and/or treatment options. - Three-dimensional characterization of regional lung deformation
- J Biomech 44(13):2489-2495 (2011)
The deformation of the lung during inspiration and expiration involves regional variations in volume change and orientational preferences. Studies have reported techniques for measuring the displacement field in the lung based on imaging or image registration. However, means of interpreting all the information in the displacement field in a physiologically relevant manner is lacking. We propose three indices of lung deformation that are determinable from the displacement field: the Jacobian—a measure of volume change, the anisotropic deformation index—a measure of the magnitude of directional preference in volume change and a slab-rod index—a measure of the nature of directional preference in volume change. To demonstrate the utility of these indices, they were determined for six human subjects using deformable image registration on static CT images, registered from FRC to TLC. Volume change was elevated in the inferior-dorsal region as should be expected for bre! athing in the supine position. The anisotropic deformation index was elevated in the inferior region owing to proximity to the diaphragm and in the lobar fissures owing to sliding. Vessel regions in the lung had a significantly rod-like deformation compared to the whole lung. Compared to upper lobes, lower lobes exhibited significantly greater volume change (19.4% and 21.3% greater in the right and left lungs on average; p<0.005) and anisotropy in deformation (26.3% and 21.8% greater in the right and left lungs on average; p<0.05) with remarkable consistency across subjects. The developed deformation indices lend themselves to exhaustive and physiologically intuitive interpretations of the displacement fields in the lung determined through image-registration techniques or finite element simulations. - Passive muscle mechanical properties of the medial gastrocnemius in young adults with spastic cerebral palsy
- J Biomech 44(13):2496-2500 (2011)
Individuals with spastic cerebral palsy (SCP) exhibit restricted joint range of motion and increased joint stiffness due to structural alterations of their muscles. Little is known about which muscle–tendon structures are responsible for these alterations. The aim of this study was to compare the passive mechanics of the ankle joint and medial gastrocnemius (MG) muscle in young adults with SCP and typically developed (TD) individuals. Nine ambulant SCP (17±2 years) and ten TD individuals (18±2 years) participated in the study. Physiological cross sectional area was estimated using freehand 3D ultrasound and found to be 37% lower in the SCP group. An isokinetic dynamometer rotated the ankle through its range while joint torque and ultrasound images of the MG muscle fascicles were simultaneously measured. Mean ankle stiffness was found to be 51% higher and mean MG fascicle strain 47% lower in the SCP group. Increased resistance to passive ankle dorsiflexion in SCP ap! pears to be related to the inability of MG muscle fascicles to elongate with increased force. - Biomechanical failure properties and microstructural content of ruptured and unruptured abdominal aortic aneurysms
- J Biomech 44(13):2501-2507 (2011)
Purpose To test the hypothesis that ruptured abdominal aortic aneurysms (AAA) are globally weaker than unruptured ones. Methods Four ruptured and seven unruptured AAA specimens were harvested whole from fresh cadavers during autopsies performed over an 18-month period. Multiple regionally distributed longitudinally oriented rectangular strips were cut from each AAA specimen for a total of 77 specimen strips. Strips were subjected to uniaxial extension until failure. Sections from approximately the strongest and weakest specimen strips were studied histologically and histochemically. From the load-extension data, failure tension, failure stress and failure strain were calculated. Rupture site characteristics such as location, arc length of rupture and orientation of rupture were also documented. Results The failure tension, a measure of the tissue mechanical caliber was remarkably similar between ruptured and unruptured AAA (group mean±standard deviation of within-subject means: 11.2±2.3 versus 11.6±3.6 N/cm; p=0.866 by mixed model ANOVA). In post-hoc analysis, there was little difference between the groups in other measures of tissue mechanical caliber as well such as failure stress (95±28 versus 98±23 N/cm2; p=0.870), failure strain (0.39±0.09 versus 0.36±0.09; p=0.705), wall thickness (1.7±0.4 versus 1.5±0.4 mm; p=0.470) , and % coverage of collagen within tissue cross section (49.6±12.9% versus 60.8±9.6%; p=0.133). In the four ruptured AAA, primary rupture sites were on the lateral quadrants (two on left; one on left-posterior; one on right). Remarkably, all rupture lines had a longitudinal orientation and ranged from 1 to 6 cm in length. Conclusion The findings are not consistent with the hypothesis that ruptured aortic aneurysms are globally weaker than unruptured ones. - Minimal adhesion surface area in tangentially loaded digital contacts
- J Biomech 44(13):2508-2510 (2011)
The stick-to-slip transition of a fingertip in contact with a planar surface does not occur instantaneously. As the tangential load increases, portions of the skin adhere while others slip, giving rise to an evolution of the contact state, termed partial slip. We develop a quasi-static model that predicts that if the coefficient of kinetic friction is larger than the coefficient of static friction, then the stuck surface area diminishes as the tangential load increases until reaching a 'minimal adhesion surface area' where it vanishes abruptly. This phenomenon was observed in recently measured finger-slip image data (André et al., 2011) that were processed by an optic flow detection algorithm. We examined the results of 10 trials. Four of them exhibited the minimal adhesion surface area phenomenon, four of them did not, and two were inconclusive. - A comparison of calibration methods for stereo fluoroscopic imaging systems
- J Biomech 44(13):2511-2515 (2011)
Stereo (biplane) fluoroscopic imaging systems are considered the most accurate and precise systems to study joint kinematics in vivo. Calibration of a biplane fluoroscopy system consists of three steps: (1) correction for spatial image distortion; (2) calculation of the focus position; and (3) calculation of the relative position and orientation of the two fluoroscopy systems with respect to each other. In this study we compared 6 methods for calibrating a biplane fluoroscopy system including a new method using a novel nested-optimization technique. To quantify bias and precision, an electronic digital caliper instrumented with two tantalum markers on radiolucent posts was imaged in three configurations, and for each configuration placed in ten static poses distributed throughout the viewing volume. Bias and precision were calculated as the mean and standard deviation of the displacement of the markers measured between the three caliper configurations. The data demonstrated that it is essential to correct for image distortion when sub-millimeter accuracy is required. We recommend calibrating a stereo fluoroscopic imaging system using an accurately machined plate and a calibration cube, which improved accuracy 2–3 times compared to the other calibration methods. Once image distortion is properly corrected, the focus position should be determined using the Direct Linear Transformation (DLT) method for its increased speed and equivalent accuracy compared to the novel nested-optimization method. The DLT method also automatically provides the 3D fluoroscopy configuration. Using the recommended calibration methodology, bias and precision of 0.09 and 0.05 mm or better can be expected for measuring inter-marker distances. - μCT-generated carpal cartilage surfaces: Validation of a technique
- J Biomech 44(13):2516-2519 (2011)
Computational models are increasingly being used for the analysis of kinematics and contact stresses in the wrist. To this point, however, the morphology of the carpal cartilage has been modeled simply, either with non-dimensional spring elements (in rigid body spring models) or via simple bone surface extrusions (e.g. for finite element models). In this work we describe an efficient method of generating high-resolution cartilage surfaces via micro-computed tomography (μCT) and registration to CT-generated bone surface models. The error associated with μCT imaging (at 10 μm) was 0.009 mm (95% confidence interval 0.007–0.012 mm ), or 1.6% of the cartilage thickness. Registration error averaged 0.33±0.16 mm (97.5% confidence limit of 0.55 mm in any one direction) and 2.42±1.56° (97.5% confidence limit of 5.5° in any direction). The technique is immediately applicable to subject-specific models driven using kinematic data obtained through in vitro testing. Howeve! r, the ultimate goal would be to generate a family of cartilage surfaces that could be scaled and/or morphed for application to models from live subjects and in vivo kinematic data. - Zheng Wu et al.: "The effect of holding time on nanoindentation measurements of creep in bone" [J. Biomech. 44 (2011) 1066–1072]
- J Biomech 44(13):2520 (2011)
- Response to Letter to the Editor from David P. Fyhrie
- J Biomech 44(13):2520-2521 (2011)
- Biomechanics of Sports Shoes, Benno M. Nigg (2010). 300 pp., Paperback, ISBN: 978-0-9867421-0-1.
- J Biomech 44(13):2522-2523 (2011)
No comments:
Post a Comment