Latest Articles Include:
- Editorial Board
- Trends Plant Sci 16(1):i (2011)
- Transcription strength and halophytic lifestyle
- Trends Plant Sci 16(1):1-3 (2011)
- Reconnecting plants and pollinators: challenges in the restoration of pollination mutualisms
- Trends Plant Sci 16(1):4-12 (2011)
Ecological restoration of plant–pollinator interactions has received surprisingly little attention, despite animal-mediated pollination underpinning reproduction of the majority of higher plants. Here, we offer a conceptual and practical framework for the ecological restoration of pollination mutualisms. Through the use of targeted restoration plantings to attract and sustain pollinators and increased knowledge of the ecological requirements of pollinators, we propose that pollination could be successfully restored in degraded ecosystems. The challenge for pollination biologists is to integrate their findings with those of plant restoration ecologists to ensure sustainable pollination in restored ecosystems. - Taking a tree's perspective on forest fragmentation genetics
- Trends Plant Sci 16(1):13-18 (2011)
Despite longstanding research, how anthropogenic disturbance affects the genetics of tree populations remains poorly understood. Although empirical evidence often conflicts with theoretical expectations, little progress has been made in refining experimental design or in reformulating theoretical hypotheses. Such progress is, however, essential to understand how forest tree species can tolerate anthropogenic disturbance. Further advances in forest fragmentation genetics research will require that processes driving reproduction and recruitment in fragmented populations are assessed from a tree's perspective instead of experimental convenience, using a multidisciplinary approach to explain the spatiotemporal dynamics of gene dispersal. In this opinion article we aim to inspire a new perspective in forest fragmentation genetics research. - PIFs: pivotal components in a cellular signaling hub
- Trends Plant Sci 16(1):19-28 (2011)
A small subset of basic helix–loop–helix transcription factors called PIFs (phytochrome-interacting factors) act to repress seed germination, promote seedling skotomorphogenesis and promote shade-avoidance through regulated expression of over a thousand genes. Light-activated phytochrome molecules directly reverse these activities by inducing rapid degradation of the PIF proteins. Here, we review recent advances in dissecting this signaling pathway and examine emerging evidence that indicates that other pathways also converge to regulate PIF activity, including the gibberellin pathway, the circadian clock and high temperature. Thus PIFs have broader roles than previously appreciated, functioning as a cellular signaling hub that integrates multiple signals to orchestrate regulation of the transcriptional network that drives multiple facets of downstream morphogenesis. The relative contributions of the individual PIFs to this spectrum of regulatory functions ranges f! rom quantitatively redundant to qualitatively distinct. - Porphyra: a marine crop shaped by stress
- Trends Plant Sci 16(1):29-37 (2011)
The marine red alga Porphyra is an important marine crop, worth US$1.3 billion per year. Cultivation research now includes farm ecology, breeding, strain conservation and new net-seeding technologies. The success of cultivation is due, in part, to the high stress tolerance of Porphyra. Many species of Porphyra lose 85–95% of their cellular water during the daytime low tide, when they are also exposed to high light and temperature stress. Antioxidant and mycosporine-like amino acid activities have been partially characterized in Porphyra, but, as we discuss here, the Porphyra umbilicalis genome project will further elucidate proteins associated with stress tolerance. Furthermore, phylogenomic and transcriptomic investigations of Porphyra sensu lato could elucidate tradeoffs made during physiological acclimation and factors associated with life-history evolution in this ancient lineage. - WD40 and CUL4-based E3 ligases: lubricating all aspects of life
- Trends Plant Sci 16(1):38-46 (2011)
The ubiquitin proteasome pathway is one of the major regulatory tools used by eukaryotic cells. E3 ligases, which allow controlled modification of proteins with ubiquitin, are crucial for the specificity of the pathway. Recently, an additional plant cullin-based E3 ligase complex was described which contains cullin 4 (CUL4) and DAMAGED DNA BINDING 1 protein as core subunits. Our knowledge of this E3 ligase has increased tremendously since its first description, and it seems to be involved in many developmental and physiological processes. Here, we review the most recent studies on CUL4 E3 complexes, with a focus on their substrate recognition and the plethora of processes that they regulate in plants, such as photomorphogenesis, flowering and abiotic stress response. - Defining the boundaries: structure and function of LOB domain proteins
- Trends Plant Sci 16(1):47-52 (2011)
The plant-specific LBD (Lateral Organ Boundaries Domain) gene family is essential in the regulation of plant lateral organ development and is involved in the regulation of anthocyanin and nitrogen metabolism. LBD proteins contain a characteristic LOB domain composed of a C-motif required for DNA-binding, a conserved glycine residue, and a leucine-zipper-like sequence required for protein–protein interactions. Recently, several LBD genes associated with mutant phenotypes related to almost all aspects of plant development, including embryo, root, leaf, and inflorescence development have been functionally characterized. These novel insights contribute to a better understanding of the molecular definition of boundaries between organs or boundaries between organs and meristems and the regulation of these processes by environmental cues and phytohormones. - Photoprotection in plants: a new light on photosystem II damage
- Trends Plant Sci 16(1):53-60 (2011)
Sunlight damages photosynthetic machinery, primarily photosystem II (PSII), and causes photoinhibition that can limit plant photosynthetic activity, growth and productivity. The extent of photoinhibition is associated with a balance between the rate of photodamage and its repair. Recent studies have shown that light absorption by the manganese cluster in the oxygen-evolving complex of PSII causes primary photodamage, whereas excess light absorbed by light-harvesting complexes acts to cause inhibition of the PSII repair process chiefly through the generation of reactive oxygen species. As we review here, PSII photodamage and the inhibition of repair are therefore alleviated by photoprotection mechanisms associated with avoiding light absorption by the manganese cluster and successfully consuming or dissipating the light energy absorbed by photosynthetic pigments, respectively.
No comments:
Post a Comment