Monday, August 24, 2009

Hot off the presses! Aug 25 PLoS Biol

The Aug 25 issue of the PLoS Biol is now up on Pubget (About PLoS Biol): if you're at a subscribing institution, just click the link in the latest link at the home page. (Note you'll only be able to get all the PDFs in the issue if your institution subscribes to Pubget.)

Latest Articles Include:

  • Metabolism Predicts Ecological Response to Warming
    - PLoS Biol 7(8):e1000180 (2009)
  • "Induced" Eyes Suggest a Path to Retinal Repair
    - PLoS Biol 7(8):e1000175 (2009)
  • Equity for Open-Access Journal Publishing
    Shieber SM - PLoS Biol 7(8):e1000165 (2009)
    Open-access journals, which provide access to their scholarly articles freely and without limitations, are at a systematic disadvantage relative to traditional closed-access journal publishing and its subscription-based business model. A simple, cost-effective remedy to this inequity could put open-access publishing on a path to become a sustainable, efficient system.
  • Don Fawcett (1917–2009): Unlocking Nature's Closely Guarded Secrets
    - PLoS Biol 7(8):e1000183 (2009)
  • Neural Substrates of Mounting Temporal Expectation
    Coull JT - PLoS Biol 7(8):e1000166 (2009)
    A new primer gives a cognitive and neuroanatomical perspective on how timing and expectation are represented in the human brain.
  • Selective Remodeling: Refining Neural Connectivity at the Neuromuscular Junction
    - PLoS Biol 7(8):e1000185 (2009)
  • It's Elementary: Science Buddies Bring Biology to Life
    - PLoS Biol 7(8):e1000182 (2009)
  • Warming and Resource Availability Shift Food Web Structure and Metabolism
    - PLoS Biol 7(8):e1000178 (2009)
    Climate change disrupts ecological systems in many ways. Many documented responses depend on species' life histories, contributing to the view that climate change effects are important but difficult to characterize generally. However, systematic variation in metabolic effects of temperature across trophic levels suggests that warming may lead to predictable shifts in food web structure and productivity. We experimentally tested the effects of warming on food web structure and productivity under two resource supply scenarios. Consistent with predictions based on universal metabolic responses to temperature, we found that warming strengthened consumer control of primary production when resources were augmented. Warming shifted food web structure and reduced total biomass despite increases in primary productivity in a marine food web. In contrast, at lower resource levels, food web production was constrained at all temperatures. These results demonstrate that small temper! ature changes could dramatically shift food web dynamics and provide a general, species-independent mechanism for ecological response to environmental temperature change.
  • Host Niches and Defensive Extended Phenotypes Structure Parasitoid Wasp Communities
    - PLoS Biol 7(8):e1000179 (2009)
    Oak galls are spectacular extended phenotypes of gallwasp genes in host oak tissues and have evolved complex morphologies that serve, in part, to exclude parasitoid natural enemies. Parasitoids and their insect herbivore hosts have coevolved to produce diverse communities comprising about a third of all animal species. The factors structuring these communities, however, remain poorly understood. An emerging theme in community ecology is the need to consider the effects of host traits, shaped by both natural selection and phylogenetic history, on associated communities of natural enemies. Here we examine the impact of host traits and phylogenetic relatedness on 48 ecologically closed and species-rich communities of parasitoids attacking gall-inducing wasps on oaks. Gallwasps induce the development of spectacular and structurally complex galls whose species- and generation-specific morphologies are the extended phenotypes of gallwasp genes. All the associated natural enemies attack their concealed hosts through gall tissues, and several structural gall traits have been shown to enhance defence against parasitoid attack. Here we explore the significance of! these and other host traits in predicting variation in parasitoid community structure across gallwasp species. In particular, we test the "Enemy Hypothesis," which predicts that galls with similar morphology will exclude similar sets of parasitoids and therefore have similar parasitoid communities. Having controlled for phylogenetic patterning in host traits and communities, we found significant correlations between parasitoid community structure and several gall structural traits (toughness, hairiness, stickiness), supporting the Enemy Hypothesis. Parasitoid community structure was also consistently predicted by components of the hosts' spatiotemporal niche, particularly host oak taxonomy and gall location (e.g., leaf versus bud versus seed). The combined explanatory power of structural and spatiotemporal traits on community structure can be high, reaching 62% in one analysis. The observed patterns derive mainly from partial niche specialisation of highly generalist p! arasitoids with broad host ranges (>20 hosts), rather than str! ict separation of enemies with narrower host ranges, and so may contribute to maintenance of the richness of generalist parasitoids in gallwasp communities. Though evolutionary escape from parasitoids might most effectively be achieved via changes in host oak taxon, extreme conservatism in this trait for gallwasps suggests that selection is more likely to have acted on gall morphology and location. Any escape from parasitoids associated with evolutionary shifts in these traits has probably only been transient, however, due to subsequent recruitment of parasitoid species already attacking other host galls with similar trait combinations.
  • Rapid Evolution of Sex Pheromone-Producing Enzyme Expression in Drosophila
    Shirangi TR Dufour HD Williams TM Carroll SB - PLoS Biol 7(8):e1000168 (2009)
    A wide range of organisms use sex pheromones to communicate with each other and to identify appropriate mating partners. While the evolution of chemical communication has been suggested to cause sexual isolation and speciation, the mechanisms that govern evolutionary transitions in sex pheromone production are poorly understood. Here, we decipher the molecular mechanisms underlying the rapid evolution in the expression of a gene involved in sex pheromone production in Drosophilid flies. Long-chain cuticular hydrocarbons (e.g., dienes) are produced female-specifically, notably via the activity of the desaturase DESAT-F, and are potent pheromones for male courtship behavior in Drosophila melanogaster. We show that across the genus Drosophila, the expression of this enzyme is correlated with long-chain diene production and has undergone an extraordinary number of evolutionary transitions, including six independent gene inactivations, three losses of expression without gen! e loss, and two transitions in sex-specificity. Furthermore, we show that evolutionary transitions from monomorphism to dimorphism (and its reversion) in desatF expression involved the gain (and the inactivation) of a binding-site for the sex-determination transcription factor, DOUBLESEX. In addition, we documented a surprising example of the gain of particular cis-regulatory motifs of the desatF locus via a set of small deletions. Together, our results suggest that frequent changes in the expression of pheromone-producing enzymes underlie evolutionary transitions in chemical communication, and reflect changing regimes of sexual selection, which may have contributed to speciation among Drosophila.
  • Ready…Go: Amplitude of the fMRI Signal Encodes Expectation of Cue Arrival Time
    Cui X Stetson C Montague PR Eagleman DM - PLoS Biol 7(8):e1000167 (2009)
    What happens when the brain awaits a signal of uncertain arrival time, as when a sprinter waits for the starting pistol? And what happens just after the starting pistol fires? Using functional magnetic resonance imaging (fMRI), we have discovered a novel correlate of temporal expectations in several brain regions, most prominently in the supplementary motor area (SMA). Contrary to expectations, we found little fMRI activity during the waiting period; however, a large signal appears after the "go" signal, the amplitude of which reflects learned expectations about the distribution of possible waiting times. Specifically, the amplitude of the fMRI signal appears to encode a cumulative conditional probability, also known as the cumulative hazard function. The fMRI signal loses its dependence on waiting time in a "countdown" condition in which the arrival time of the go cue is known in advance, suggesting that the signal encodes temporal probabilities rather than si! mply elapsed time. The dependence of the signal on temporal expectation is present in "no-go" conditions, demonstrating that the effect is not a consequence of motor output. Finally, the encoding is not dependent on modality, operating in the same manner with auditory or visual signals. This finding extends our understanding of the relationship between temporal expectancy and measurable neural signals.
  • Distinct Parietal and Temporal Pathways to the Homologues of Broca's Area in the Monkey
    Petrides M Pandya DN - PLoS Biol 7(8):e1000170 (2009)
    The homologues of the two distinct architectonic areas 44 and 45 that constitute the anterior language zone (Broca's region) in the human ventrolateral frontal lobe were recently established in the macaque monkey. Although we know that the inferior parietal lobule and the lateral temporal cortical region project to the ventrolateral frontal cortex, we do not know which of the several cortical areas found in those regions project to the homologues of Broca's region in the macaque monkey and by means of which white matter pathways. We have used the autoradiographic method, which permits the establishment of the cortical area from which axons originate (i.e., the site of injection), the precise course of the axons in the white matter, and their termination within particular cortical areas, to examine the parietal and temporal connections to area 44 and the two subdivisions of area 45 (i.e., areas 45A and 45B). The results demonstrated a ventral temporo-frontal stream of f! ibers that originate from various auditory, multisensory, and visual association cortical areas in the intermediate superolateral temporal region. These axons course via the extreme capsule and target most strongly area 45 with a more modest termination in area 44. By contrast, a dorsal stream of axons that originate from various cortical areas in the inferior parietal lobule and the adjacent caudal superior temporal sulcus was found to target both areas 44 and 45. These axons course in the superior longitudinal fasciculus, with some axons originating from the ventral inferior parietal lobule and the adjacent superior temporal sulcus arching and forming a simple arcuate fasciculus. The cortex of the most rostral part of the inferior parietal lobule is preferentially linked with the ventral premotor cortex (ventral area 6) that controls the orofacial musculature. The cortex of the intermediate part of the inferior parietal lobule is linked with both areas 44 and 45. These fi! ndings demonstrate the posterior parietal and temporal connect! ions of the ventrolateral frontal areas, which, in the left hemisphere of the human brain, were adapted for various aspects of language production. These precursor circuits that are found in the nonlinguistic, nonhuman, primate brain also exist in the human brain. The possible reasons why these areas were adapted for language use in the human brain are discussed. The results throw new light on the prelinguistic precursor circuitry of Broca's region and help understand functional interactions between Broca's ventrolateral frontal region and posterior parietal and temporal association areas.
  • Hippocampus Leads Ventral Striatum in Replay of Place-Reward Information
    Lansink CS Goltstein PM Lankelma JV McNaughton BL Pennartz CM - PLoS Biol 7(8):e1000173 (2009)
    Associating spatial locations with rewards is fundamental to survival in natural environments and requires the integrity of the hippocampus and ventral striatum. In joint multineuron recordings from these areas, hippocampal–striatal ensembles reactivated together during sleep. This process was especially strong in pairs in which the hippocampal cell processed spatial information and ventral striatal firing correlated to reward. Replay was dominated by cell pairs in which the hippocampal "place" cell fired preferentially before the striatal reward-related neuron. Our results suggest a plausible mechanism for consolidating place-reward associations and are consistent with a central tenet of consolidation theory, showing that the hippocampus leads reactivation in a projection area.
  • Glia and Muscle Sculpt Neuromuscular Arbors by Engulfing Destabilized Synaptic Boutons and Shed Presynaptic Debris
    - PLoS Biol 7(8):e1000184 (2009)
    Synapse remodeling is an extremely dynamic process, often regulated by neural activity. Here we show during activity-dependent synaptic growth at the Drosophila NMJ many immature synaptic boutons fail to form stable postsynaptic contacts, are selectively shed from the parent arbor, and degenerate or disappear from the neuromuscular junction (NMJ). Surprisingly, we also observe the widespread appearance of presynaptically derived "debris" during normal synaptic growth. The shedding of both immature boutons and presynaptic debris is enhanced by high-frequency stimulation of motorneurons, indicating that their formation is modulated by neural activity. Interestingly, we find that glia dynamically invade the NMJ and, working together with muscle cells, phagocytose shed presynaptic material. Suppressing engulfment activity in glia or muscle by disrupting the Draper/Ced-6 pathway results in a dramatic accumulation of presynaptic debris, and synaptic growth in turn is sev! erely compromised. Thus actively growing NMJ arbors appear to constitutively generate an excessive number of immature boutons, eliminate those that are not stabilized through a shedding process, and normal synaptic expansion requires the continuous clearance of this material by both glia and muscle cells.
  • Generation of Functional Eyes from Pluripotent Cells
    Viczian AS Solessio EC Lyou Y Zuber ME - PLoS Biol 7(8):e1000174 (2009)
    Pluripotent cells such as embryonic stem (ES) and induced pluripotent stem (iPS) cells are the starting point from which to generate organ specific cell types. For example, converting pluripotent cells to retinal cells could provide an opportunity to treat retinal injuries and degenerations. In this study, we used an in vivo strategy to determine if functional retinas could be generated from a defined population of pluripotent Xenopus laevis cells. Animal pole cells isolated from blastula stage embryos are pluripotent. Untreated, these cells formed only epidermis, when transplanted to either the flank or eye field. In contrast, misexpression of seven transcription factors induced the formation of retinal cell types. Induced retinal cells were committed to a retinal lineage as they formed eyes when transplanted to the flanks of developing embryos. When the endogenous eye field was replaced with induced retinal cells, they formed eyes that were molecularly, anatomically,! and electrophysiologically similar to normal eyes. Importantly, induced eyes could guide a vision-based behavior. These results suggest the fate of pluripotent cells may be purposely altered to generate multipotent retinal progenitor cells, which differentiate into functional retinal cell classes and form a neural circuitry sufficient for vision.
  • β1 Integrin Maintains Integrity of the Embryonic Neocortical Stem Cell Niche
    Loulier K Lathia JD Marthiens V Relucio J Mughal MR Tang SC Coksaygan T Hall PE Chigurupati S Patton B Colognato H Rao MS Mattson MP Haydar TF Ffrench-Constant C - PLoS Biol 7(8):e1000176 (2009)
    During embryogenesis, the neural stem cells (NSC) of the developing cerebral cortex are located in the ventricular zone (VZ) lining the cerebral ventricles. They exhibit apical and basal processes that contact the ventricular surface and the pial basement membrane, respectively. This unique architecture is important for VZ physical integrity and fate determination of NSC daughter cells. In addition, the shorter apical process is critical for interkinetic nuclear migration (INM), which enables VZ cell mitoses at the ventricular surface. Despite their importance, the mechanisms required for NSC adhesion to the ventricle are poorly understood. We have shown previously that one class of candidate adhesion molecules, laminins, are present in the ventricular region and that their integrin receptors are expressed by NSC. However, prior studies only demonstrate a role for their interaction in the attachment of the basal process to the overlying pial basement membrane. Here we ! use antibody-blocking and genetic experiments to reveal an additional and novel requirement for laminin/integrin interactions in apical process adhesion and NSC regulation. Transient abrogation of integrin binding and signalling using blocking antibodies to specifically target the ventricular region in utero results in abnormal INM and alterations in the orientation of NSC divisions. We found that these defects were also observed in laminin α2 deficient mice. More detailed analyses using a multidisciplinary approach to analyse stem cell behaviour by expression of fluorescent transgenes and multiphoton time-lapse imaging revealed that the transient embryonic disruption of laminin/integrin signalling at the VZ surface resulted in apical process detachment from the ventricular surface, dystrophic radial glia fibers, and substantial layering defects in the postnatal neocortex. Collectively, these data reveal novel roles for the laminin/integrin interaction in anchoring embryon! ic NSCs to the ventricular surface and maintaining the physica! l integrity of the neocortical niche, with even transient perturbations resulting in long-lasting cortical defects.
  • Omega-3 Fatty Acids and Inflammation: Novel Interactions Reveal a New Step in Neutrophil Recruitment
    - PLoS Biol 7(8):e1000177 (2009)
    Inflammation is a physiological response to tissue trauma or infection, but leukocytes, which are the effector cells of the inflammatory process, have powerful tissue remodelling capabilities. Thus, to ensure their precise localisation, passage of leukocytes from the blood into inflamed tissue is tightly regulated. Recruitment of blood borne neutrophils to the tissue stroma occurs during early inflammation. In this process, peptide agonists of the chemokine family are assumed to provide a chemotactic stimulus capable of supporting the migration of neutrophils across vascular endothelial cells, through the basement membrane of the vessel wall, and out into the tissue stroma. Here, we show that, although an initial chemokine stimulus is essential for the recruitment of flowing neutrophils by endothelial cells stimulated with the inflammatory cytokine tumour necrosis factor-α, transit of the endothelial monolayer is regulated by an additional and downstream stimulus. Thi! s signal is supplied by the metabolism of the omega-6-polyunsaturated fatty acid (n-6-PUFA), arachidonic acid, into the eicosanoid prostaglandin-D2 (PGD2) by cyclooxygenase (COX) enzymes. This new step in the neutrophil recruitment process was revealed when the dietary n-3-PUFA, eicosapentaenoic acid (EPA), was utilised as an alternative substrate for COX enzymes, leading to the generation of PGD3. This alternative series eicosanoid inhibited the migration of neutrophils across endothelial cells by antagonising the PGD2 receptor. Here, we describe a new step in the neutrophil recruitment process that relies upon a lipid-mediated signal to regulate the migration of neutrophils across endothelial cells. PGD2 signalling is subordinate to the chemokine-mediated activation of neutrophils, but without the sequential delivery of this signal, neutrophils fail to penetrate the endothelial cell monolayer. Importantly, the ability of the dietary n-3-PUFA, EPA, to inhibit this process ! not only revealed an unsuspected level of regulation in the mi! gration of inflammatory leukocytes, it also contributes to our understanding of the interactions of this bioactive lipid with the inflammatory system. Moreover, it indicates the potential for novel therapeutics that target the inflammatory system with greater affinity and/or specificity than supplementing the diet with n-3-PUFAs.
  • Ligand-Independent Traffic of Notch Buffers Activated Armadillo in Drosophila
    Sanders PG Muñoz-Descalzo S Balayo T Wirtz-Peitz F Hayward P Arias AM - PLoS Biol 7(8):e1000169 (2009)
    Notch receptors act as ligand-dependent membrane-tethered transcription factors with a prominent role in binary cell fate decisions during development, which is conserved across species. In addition there is increasing evidence for other functions of Notch, particularly in connection with Wnt signalling: Notch is able to modulate the activity of Armadillo/ß-catenin, the effector of Wnt signalling, in a manner that is independent of its transcriptional activity. Here we explore the mechanism of this interaction in the epithelium of the Drosophila imaginal discs and find that it is mediated by the ligand-independent endocytosis and traffic of the Notch receptor. Our results show that Notch associates with Armadillo near the adherens junctions and that it is rapidly endocytosed promoting the traffic of an activated form of Armadillo into endosomal compartments, where it may be degraded. As Notch has the ability to interact with and downregulate activated forms of Armadil! lo, it is possible that in vivo Notch regulates the transcriptionally competent pool of Armadillo. These interactions reveal a previously unknown activity of Notch, which serves to buffer the function of activated Armadillo and might underlie some of its transcription-independent effects.
  • Persistent cAMP-Signals Triggered by Internalized G-Protein–Coupled Receptors
    Calebiro D Nikolaev VO Gagliani MC de Filippis T Dees C Tacchetti C Persani L Lohse MJ - PLoS Biol 7(8):e1000172 (2009)
    G-protein–coupled receptors (GPCRs) are generally thought to signal to second messengers like cyclic AMP (cAMP) from the cell surface and to become internalized upon repeated or prolonged stimulation. Once internalized, they are supposed to stop signaling to second messengers but may trigger nonclassical signals such as mitogen-activated protein kinase (MAPK) activation. Here, we show that a GPCR continues to stimulate cAMP production in a sustained manner after internalization. We generated transgenic mice with ubiquitous expression of a fluorescent sensor for cAMP and studied cAMP responses to thyroid-stimulating hormone (TSH) in native, 3-D thyroid follicles isolated from these mice. TSH stimulation caused internalization of the TSH receptors into a pre-Golgi compartment in close association with G-protein αs-subunits and adenylyl cyclase III. Receptors internalized together with TSH and produced downstream cellular responses that were distinct from those trigger! ed by cell surface receptors. These data suggest that classical paradigms of GPCR signaling may need revision, as they indicate that cAMP signaling by GPCRs may occur both at the cell surface and from intracellular sites, but with different consequences for the cell.
  • Role of Translational Coupling in Robustness of Bacterial Chemotaxis Pathway
    Løvdok L Bentele K Vladimirov N Müller A Pop FS Lebiedz D Kollmann M Sourjik V - PLoS Biol 7(8):e1000171 (2009)
    Chemotaxis allows bacteria to colonize their environment more efficiently and to find optimal growth conditions, and is consequently under strong evolutionary selection. Theoretical and experimental analyses of bacterial chemotaxis suggested that the pathway has been evolutionarily optimized to produce robust output under conditions of such physiological perturbations as stochastic intercellular variations in protein levels while at the same time minimizing complexity and cost of protein expression. Pathway topology in Escherichia coli apparently evolved to produce an invariant output under concerted variations in protein levels, consistent with experimentally observed transcriptional coupling of chemotaxis genes. Here, we show that the pathway robustness is further enhanced through the pairwise translational coupling of adjacent genes. Computer simulations predicted that the robustness of the pathway against the uncorrelated variations in protein levels can be enhance! d by a selective pairwise coupling of individual chemotaxis genes on one mRNA, with the order of genes in E. coli ranking among the best in terms of noise compensation. Translational coupling between chemotaxis genes was experimentally confirmed, and coupled expression of these genes was shown to improve chemotaxis. Bioinformatics analysis further revealed that E. coli gene order corresponds to consensus in sequenced bacterial genomes, confirming evolutionary selection for noise reduction. Since polycistronic gene organization is common in bacteria, translational coupling between adjacent genes may provide a general mechanism to enhance robustness of their signaling and metabolic networks. Moreover, coupling between expression of neighboring genes is also present in eukaryotes, and similar principles of noise reduction might thus apply to all cellular networks.

No comments: